Scalar and Vector Fields:

Let \(\phi (\mathbf{r}, t) \) and \(\mathbf{V} (\mathbf{r}, t) \)

\(\mathbf{r} = [x_1, x_2, x_3] \)
Positive vector

1. **Gradient:** \(\nabla \phi = \left[\frac{\partial \phi}{\partial x_1} \right] \)

Interpretation: \(\phi (M_2) - \phi (M_1) \), where \(M_1, M_2 \) are two close points

\(\phi (M_2) - \phi (M_1) = (\mathbf{r}_2 - \mathbf{r}_1) \cdot \frac{\partial \phi}{\partial x_i} + \ldots \)

\(= \nabla \phi \cdot d\mathbf{M} \)

Directional Derivative:

\(\frac{d\phi}{ds} = \nabla \phi \cdot \mathbf{n} \)

A scalar function has its maximum directional derivative in the direction of its gradient.
A scalar function has zero directional derivative normal to its gradient.

Application:

\(\phi = c \) is a surface
\(\nabla \phi \) is orthogonal to the surface.

\(d\phi = \nabla \phi \cdot d\mathbf{M} = 0 \Rightarrow \nabla \phi \perp d\mathbf{M} \).

Example:

\(x^2 + y^2 - R^2 = 0 \quad \nabla \phi = [2x, 2y] \)

\((x-x_0)^2 + (y-y_0)^2 - R^2 = 0 \quad \nabla \phi = [2(x-x_0), 2(y-y_0)] \)
Divergence:
\[\nabla \cdot \mathbf{V} = \frac{\partial V_i}{\partial x_i} \]

Interpretation:

Consider a one-dimensional fluid \(V(x) \) and a volume of cross-section \(A \perp V \) and width \(dx \) moving with \(V(x) \).

Initially, the volume is in a box, after a time \(\Delta t \), the volume has expanded along the dashed lines to

\[A \Delta x = V(x) \Delta t + V(x+\Delta x) \Delta t \]

The change in volume is \(A \Delta x \) \(\Delta x \) \(\Delta t \).

The rate of change in volume is \(\frac{\partial V(x+\Delta x)}{\partial x} \frac{\Delta x}{\Delta x} \Delta t \).

The relative rate of volume change is \(\frac{\Delta V}{\Delta x} \).

Hence, divergence represents the relative volume rate of change of a volume moving with the field \(V \).

If \(\mathbf{V} \) is the velocity field of a liquid, then since liquid density is constant, conservation of mass implies conservation of volume, hence \(\nabla \cdot \mathbf{V} = 0 \) for a liquid or incompressible fluid.

If \(\mathbf{V} \) is the velocity field of a gas, then \(\nabla \cdot \mathbf{V} \mathbf{V} \) represents the mass flux outward, percent volume...
\[\nabla \times \mathbf{F} \]

\[
\begin{vmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{vmatrix}
\]

\[
= \frac{\partial}{\partial y} \left(\frac{\partial B_3}{\partial z} - \frac{\partial B_2}{\partial x} \right) - \frac{\partial}{\partial z} \left(\frac{\partial B_1}{\partial x} - \frac{\partial B_3}{\partial y} \right) + \frac{\partial}{\partial x} \left(\frac{\partial B_2}{\partial y} - \frac{\partial B_1}{\partial z} \right)
\]

\[
= \varepsilon_{ijk} \frac{\partial B_j}{\partial x_i}
\]

\[E_{ijk} \text{ is the permutation index } \neq 1 \]

Significance:

1. **RBR**
 \[
 \begin{align*}
 u &= -y \omega \\
 v &= x \omega \\
 w &= 0
 \end{align*}
 \]
 \[
 \nabla \times \mathbf{v} = 2 \mathbf{\omega} \times \mathbf{r}
 \]
 The curl is twice the angular velocity of a rotating rigid body.

2. **Vortex Field**
 \[
 \begin{align*}
 u &= -\frac{\rho y}{x^2 + y^2} \\
 v &= \frac{\rho x}{x^2 + y^2} \\
 \end{align*}
 \]
 \[
 \frac{\partial v}{\partial x} = \frac{\rho - x^2 + y^2}{(x^2 + y^2)^2}, \quad \frac{\partial u}{\partial y} = -\rho \frac{x^2 y}{(x^2 + y^2)^2} \implies \nabla \times \mathbf{v} = 0
 \]
Results:

1. If \(\nabla = \nabla \phi \) then \(\nabla \times \nabla = 0 \)

\[\nabla \times (\nabla \phi) = 0 \]

and the reciprocal is true, if \(\nabla \times \nabla = 0 \)

there \(\exists \phi \) such that \(\nabla^2 = \nabla \phi \) is potential a corotational.

2. If \(\nabla \cdot \nabla = 0 \), the field is said to be solenoidal or divergence-free.

3. If \(\nabla \cdot \nabla = 0 \) and \(\nabla \times \nabla = 0 \), then \(\exists \phi \)

\[\nabla = \nabla \phi \quad \nabla \cdot \nabla = \nabla \phi = 0 \quad \text{Laplace Equation} \]

Solutions to Laplace equation are called harmonic functions.

Concept of a circulation

Let \(\nabla \) be a field and \(C \) be a simply connected curve, then

\[T = \int_C \nabla \cdot ds \] is the circulation of \(\nabla \) along \(C \)

\[ds = dz \] where \(z \) is the unit tangent to \(C \), and \(ds \) is the elemental length of the arc along \(C \). The line integral is calculated by moving along \(C \) in a given direction. If \(C \) is a closed curve, the positive direction is determined by the right-hand screw rule.
General Theorems:

1. Divergence Theorem:

Consider a volume \(V \) surrounded by a surface \(\Sigma \). Let \(\mathbf{n} \) be the unit outward normal to \(\Sigma \), then

\[
\int_V \nabla \cdot \mathbf{V} \, dV = \int_{\Sigma} \mathbf{V} \cdot \mathbf{n} \, d\Sigma
\]

Concept of a flux = rate of flow/unit time

\[A(\mathbf{V} \cdot \mathbf{n}) \]

Generalize to

\[\int_{\Sigma} \mathbf{V} \cdot \mathbf{n} \, d\Sigma \]

Physical interpretation of the divergence theorem

\[\int_{\Sigma} \mathbf{V} \cdot \mathbf{n} \, d\Sigma = \text{rate of expansion of } V \]

\[(\mathbf{V} \cdot \mathbf{n}) d\Sigma = \text{rate of expansion of } V \]

For a gas, \(\mathbf{V} \cdot \mathbf{n} \) represents the mass flux per unit volume. This is equal to the change in time of the density. Hence,

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = 0
\]

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = 0 \] expresses the conservation of mass

where \(q \) is a source distribution.
2 Green's Theorem

\[\nabla \cdot \phi = \phi_1 \nabla \cdot \phi_2 \]

\[\int \nabla \cdot \phi \, d\mathbf{a} = \int \nabla \cdot \phi \, d\Sigma \]

\[\int \nabla \cdot (\phi_1 \nabla \phi_2) \, d\mathbf{a} = \int \phi_1 \nabla \cdot \phi_2 \, d\Sigma \]

\[\nabla \cdot (\phi_1 \nabla \phi_2) = \phi_1 \nabla \cdot \phi_2 + \nabla \phi_1 \cdot \nabla \phi_2 \]

First Green's theorem

\[\int \nabla \cdot (\phi_1 \nabla^2 \phi_2 + \nabla \phi_1 \cdot \nabla \phi_2) \, d\mathbf{a} = \int \phi_1 \, \nabla \cdot \phi_2 \, d\Sigma \]

Second Green's theorem

\[\int (\phi_1 \nabla^2 \phi_2 - \phi_2 \nabla \cdot \phi_1) \, d\mathbf{a} = \int \nabla \cdot (\phi_1 \nabla \phi_2 - \phi_2 \nabla \phi_1) \, d\Sigma \]

Special Cases:

1. \(\phi_1 = \phi_2 = \phi \)

\[\int [\nabla \cdot (\nabla \phi)^2] \, d\mathbf{a} = \int \phi \, \nabla \cdot \phi \, d\Sigma \]

2. \(\phi_1 = \phi, \phi_2 = 1 \)

\[\int \phi \, \nabla \phi \, d\mathbf{a} = \int \frac{\partial \phi}{\partial n} \, d\Sigma \]
\[\phi_1 = 1, \quad \phi_2 = 1 \]

\[\int_{\partial S} \mathbf{V} \cdot \mathbf{d} \sigma = \int_{S} \mathbf{V} \cdot \mathbf{n} \, d\Sigma \]

Stokes' Theorem:

Consider a surface \(S \) having a closed curve \(C \) as its boundary, then

\[\int_{S} \mathbf{n} \cdot (\mathbf{V} \times \mathbf{n}) \, d\sigma = \int_{C} \mathbf{V} \cdot d\mathbf{r} \]

Example:

\[\int_{\partial R} (\mathbf{V} \times \mathbf{n}) \, d\sigma = \int_{R} \nabla \cdot (\mathbf{V} \times \mathbf{n}) \, d\Sigma \]

\[\nabla \times \mathbf{n} = 0 \]

\[\nabla \cdot (\mathbf{V} \times \mathbf{n}) = \mathbf{n} \cdot \nabla \times \mathbf{V} \]