Linear Operators and Linear Equations

1 Linear Equations

Let E be an n-dimensional space and let $\vec{x} = \{x_1, x_2, \cdots, x_n\} \in E$. We define the inner product

$$ (\vec{x}, \vec{y}) = \sum_{i=1}^{n} x_i y_i. \quad (1) $$

and the norm

$$ ||\vec{x}|| = (\vec{x}, \vec{x})^{\frac{1}{2}}. \quad (2) $$

A linear operator \mathcal{L} on E is denoted $\mathcal{L} : E \to F \subseteq E$. In linear algebra, the operator can be represented by a matrix A. An $n \times n$ matrix A can be represented by its column vectors, $A = \{c_1, c_2, \cdots, c_n\}$ or by its row vectors $A = \{r_1, r_2, \cdots, r_n\}^t$. The rank of A is the number of independent column vectors or the number of independent row vectors. If the rank of A is $< n$, A is said to be singular.

A system of n linear equations can be written as

$$ A\vec{x} = \vec{b}. \quad (3) $$

Or

$$ \sum_{i=1}^{n} x_i \vec{c}_i = \vec{b}. \quad (4) $$

1.1 A is of rank n

The column vectors $\{\vec{c}_i\}$ are independent and span E. The associated homogenous equation, $A\vec{x} = 0$, has no nontrivial solutions. Equation (3) has a unique solution

$$ \vec{x} = A^{-1}\vec{b}. \quad (5) $$

The matrix A, or the operator \mathcal{L}, is said to be invertible.
1.2 A is singular and of rank $n - k < n$

The column vectors span a subspace S_{n-k} of dimension $n-k$. The homogeneous equation associated with (3), $A\vec{x} = 0$, implies that $\vec{r}_i \cdot \vec{x} = 0$ for $i = 1, 2, \cdots, n$. As a result the Null space of A, denoted $\mathcal{N}(A)$, is orthogonal to all \vec{r}_i for $i = 1, 2, \cdots, n$. Similarly, $\mathcal{N}(A^t)$ is orthogonal to all \vec{c}_i for $i = 1, 2, \cdots, n$.

1. If $\vec{b} \notin S_{n-k}$, equation 3 has no solution.

2. If $\vec{b} \in S_{n-k}$, then \vec{b} is orthogonal to $\mathcal{N}(A^t)$. The solution of equation 3 is

$$\vec{x} = \vec{x}_h + \vec{x}_p$$

where \vec{x}_p is a particular solution of 3 and \vec{x}_h is a solution of the associated homogeneous equation given by

$$\vec{x}_h = \sum_{i=1}^{i=k} a_i \vec{e}_i$$

where \vec{e}_i are independent vectors which span $\mathcal{N}(A)$ and a_i are arbitrary constants.

2 Hilbert Space

Let E be an infinite dimensional vector space and let $\vec{x} = \{x_1, x_2, \cdots, x_n, \cdots\} \in E$. For example, consider the linear vector space of all functions $f(t)$ continuous on the closed interval $[a, b]$. We denote such a vector space by $C(a, b)$.

1. **Normed Space**: E is said to be a normed vector space if a norm $||\vec{x}||$ is defined in E. For example, in $C(a, b)$, we define the norm as the maximum value of the function in the interval (a, b).

2. **Convergence and Complete Space**: A sequence of vectors $\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_n, \cdots,$ in E is said to converge to a vector \vec{x} in E if, given $\epsilon > 0$, there exists an integer $N(\epsilon)$ such that

$$||\vec{x} - \vec{x}_n|| < \epsilon,$$ \hspace{1cm} (8)

for all $n > N$. It follows that for a given $\epsilon > 0$, there exists an integer $N_1(\epsilon)$ such that

$$||\vec{x}_m - \vec{x}_n|| < \epsilon,$$ \hspace{1cm} (9)

for all n and m greater than N_1. Such a sequence is known as a Cauchy sequence. The vector \vec{x} is called the limit of the sequence, and we write

$$\vec{x} = \lim_{n \to \infty} \vec{x}_n.$$ \hspace{1cm} (10)

A vector space E is said to be complete if for every Cauchy sequence $\{\vec{x}_n\}$ in E there exists a vector $\vec{x} \in E$ such that $\vec{x} = \lim_{n \to \infty} \vec{x}_n$.
3. **Inner Product**: For finite dimensional spaces we have defined the inner product of two vectors by (1). However, for an infinite dimensional space such a product will tend to infinity and thus is meaningless. Various inner products are usually used depending on the spaces. For example, for two functions \(u \) and \(v \) in \(C(0, 1) \), we use the inner product

\[
(u, v) = \int_0^1 u(t)v(t)dt, \tag{11}
\]

and the norm \(||u|| = (u, u)^{\frac{1}{2}} \), where \(u \) and \(v \in C(0, 1) \).

Definition: A complete normed linear space with an inner product is called a *Hilbert space*.

3 Sturm-Liouville Theory

Consider the second order differential operator in self-adjoint form

\[
\mathcal{L} \equiv \frac{d}{dx} \left(p(x) \frac{d}{dx} \right) + q(x), \tag{12}
\]

where \(p(x) \in C^1(a, b) \) and \(q(x) \in C(a, b) \). Consider the homogeneous equation

\[
\mathcal{L}u = \lambda r(x)u \tag{13}
\]

where \(r(x) \in C(a, b) \) and \(\lambda \) is a constant. The constant \(\lambda \) for which a nontrivial solution to (13) exists is called an *eigenvalue* of \(\mathcal{L} \), and the solution \(u(x) \in C^2(a, b) \) corresponding to \(\lambda \) is called an *eigenfunction*.

Definition: If \((\mathcal{L}u, v) = (u, \mathcal{L}^*v)\) for all \(u \) and \(v \in C^2(a, b) \), then \(\mathcal{L}^* \) is called the *adjoint operator* of \(\mathcal{L} \).

Definition: An operator \(\mathcal{L} \) is said to be self-adjoint if \(\mathcal{L}^* = \mathcal{L} \).

Theorem: Every pair of eigenfunctions belonging to distinct eigenvalues of a self-adjoint operator \(\mathcal{L} : S \subseteq C^2(a, b) \to C(a, b) \) are orthogonal with respect to the weight function \(r(x) \).

Proof: \(\mathcal{L}u = \lambda ru \) and \(\mathcal{L}v = \mu rv \). Consider the inner products, \((v, \mathcal{L}u) = \lambda (ru, v)\) and \((u, \mathcal{L}v) = \mu (rv, u)\). Since the operator is self-adjoint, the two inner products are equal. Therefore, \(\lambda (ru, v) = \mu (rv, u) \). Or \((\lambda - \mu)(ru, v) = 0\). Since \(\lambda \neq \mu \), \((ru, v) = 0\).
3.1 Conditions for L to be Self–Adjoint

If L is self–adjoint, we have

$$(L u, v) = (u, L v)$$ (14)

for all functions u and $v \in S$. Substituting the expression for L from 13, we get

$$\int_a^b \left[\frac{d}{dx} (p u') + q u \right] v dx = \int_a^b u \left[\frac{d}{dx} (p v') + q v \right] dx$$ (15)

which, after integration by parts, yields the condition

$$[p(uv' - u'v)]_a^b = 0.$$ (16)

where the expression $[X]_a^b = X(b) - X(a)$. This condition shows that the condition for an operator to be self–adjoint depends on the property of the function space S as well as on the operator through the function $p(x)$. The following shows typical conditions to be satisfied for self–adjointness.

1. $u(a) = 0, u(b) = 0$, for all $u \in S$.
2. $u'(a) = 0, u'(b) = 0$, for all $u \in S$.
3. $u'(a) - \sigma_1 u(a) = 0, u'(b) - \sigma_2 u(b) = 0$, for all $u \in S$.
4. $u(a) = u(b)$, and, $p(a)u'(a) = p(b)u'(b)$.
5. $u(a)$ and $u'(a)$ are finite and $p(a) = 0$, and $u(b)$, and, $u'(b)$ are finite and $p(b) = 0$.

Note that the first three conditions are homogeneous boundary conditions which defines the function space S and are independent of the coefficients of the operator. Conditions (4) are periodic and impose conditions on the coefficient $p(x)$ of the operator. Finally, conditions (5) is an example of homogeneous boundary conditions satisfied by the coefficient $p(x)$ of the operator.

These examples clearly shows that self–adjointness is a property of the boundary value problem rather than that of the operator.

Theorem: Eigenfunctions corresponding to distinct eigenvalues of a self-adjoint operator $L : S \subseteq C^2(a, b) \to C(a, b)$ are orthogonal with respect to the weight function $r(x)$ and, for homogeneous boundary conditions eigenfunctions corresponding to the same eigenvalue are not independent.

Proof: We only give proof to the last statement. If $L u = \lambda r u$ and $L v = \lambda r v$, then

$$v L u - u L v = [p(vu' - uv')]'.$$
Integrating gives, \(p(vu' - uv') = \text{Constant}. \) For homogeneous conditions the constant is zero, and we have, \(vu' - uv' = 0 \), or

\[
\frac{u'}{u} = \frac{v'}{v},
\]

which after integration gives, \(u = K v \), where \(K \) is a constant.

Definition: A set of functions \(\{ \varphi_0, \varphi_1, \cdots, \varphi_n, \cdots \} \) is a basis for \(C[a, b] \) if the set is linearly independent and if every element \(f \in C[a, b] \) may be written as a linear combination of the set. Such a set of functions is called a complete set of functions.

Theorem: The eigenfunctions \(\{ \varphi_0, \varphi_1, \cdots, \varphi_n, \cdots \} \) of a self-adjoint operator \(\mathcal{L} : S \subseteq C^2(a, b) \rightarrow C(a, b) \) form a complete set.

Corollary: If a set of functions is complete in a space then any function in the space can be written as a linear combination of the elements of the complete set. Thus for any square integrable continuous function \(f(x) \) we can write

\[
 f(x) = \sum_{n=0}^{\infty} a_n \varphi_n(x),
\]

where \(\varphi_n(x) \) are the eigenfunctions of the adjoint operator.

Theorem: Any regular self-adjoint boundary–value problem has an infinite sequence of real eigenvalues \(\lambda_0 < \lambda_1 < \lambda_2 \cdots \) with

\[
 \lim_{n \to \infty} \lambda_n = \infty.
\]

The eigenfunction \(\varphi_n(x) \) corresponding to the eigenvalue \(\lambda_n \) has exactly \(n \) zeros in the interval \([a, b]\).

Example: Consider the boundary–value problem

\[
 \frac{d^2y}{dx^2} + \lambda y = 0, \ y(0) = 0, \ y(\pi) = 0,
\]

whose solution is \(\lambda_n = (n + 1)^2, n = 1, 2, \cdots \) and \(\varphi_n = \sin(n + 1)x \). Then \(\varphi_0 = \sin x \) has no zeros between 0 and \(\pi \), while \(\varphi_n = \sin(n + 1)x \) has \(n \) zeros between 0 and \(\pi \).

Theorem: For a regular self–adjoint boundary–value problem, the eigenvalues \(\lambda_n \) are given by the asymptotic formula

\[
 \sqrt{\lambda_n} = \frac{n\pi}{b-a} + \frac{O(1)}{n} \text{for } n = 1, 2, \cdots.
\]
4 Existence and Uniqueness of the Solution of $\mathcal{L}y = f$

Theorem: If the homogeneous equation $\mathcal{L}y = 0$ has a non-trivial solution, the solution of the corresponding non-homogeneous equation is not unique. Conversely, if the solution of the non-homogeneous equation is not unique, there exists a non-trivial solution of the homogeneous equation.

Theorem: The non-homogeneous equation

$$\mathcal{L}y = f$$ \hfill (18)

has a solution for a given function f if, and only if, f is orthogonal to the null space of the adjoint homogeneous equation

$$\mathcal{L}^*z = 0.$$ \hfill (19)

That is if

$$(f, z) = 0$$ \hfill (20)