Surface Area $z =f(x,y)$:
$ \intd{} dA = \intd{} \sec \gamma \; dxdy \mm $ where $\m \sec\gamma = \sqrt{1+\Big(\frac{\p f}{\p x}\Big)^2++\Big(\frac{\p f}{\p y}\Big)^2 }$
Normal vector $\vec n = \frac{\nabla \Phi}{|\nabla \Phi|}$, where the surface is given by $\Phi(x,y,z)=$constant.
Using appropriate coodinate system is crucial.