Sample Final Exam,
1(b), 2(a), 3(e), 4(b), 5(c), 6(e), 7(e), 8(d),

9(a), 10(a), 11(d), 12(e), 13(a), 14(c), 15(c)

Problem 16.

(a) Find the Taylor series for sin(z?) about z = 0.
Sol.
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(b) Find the Taylor series for the function G(x n(t*)dt about x = 0. Sol.
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Probelm 17. (a) Find the minimum distance from the origin to the plane = + 2y + 3z = 14.
Sol. Lagrange method: Minimizing /22 + y2 + 22 is the same as minimizing 22 + y? + 22
f(z) =2 +9* 4+ 22 + XNz + 2y + 32 — 14)
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The minimum distance: /22 + y2 + 22 = /12 + 22 + 32 = \/14.




(b) Find the equation of the normal line of the surface ¥+ 2y*+32? = 4 at the point (1,1, 1).
Sol. Let f(z) = 2% + 2y* + 322 — 4

Vf=(2x,4y,62) = 2(1,2,3) at (z,y,2) = (1,1, 1).

The normal line is

Problem 18 (a) What extension is needed for a function f(z) defined on (0,1) in order to have
a Fourier Sine series?
Sol. Odd extension.

(b) If f(x) =2 for 0 < 2 <, find the Fourier Sine series.
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