Name: \_\_\_\_\_

This Sample Test does not cover all materials of Chapters 2 and 4. The Error Estimate, and all materials in Chapter 1 after error estimate will be included in our Test 2.

Multiple Choice

**1.**(6 pts.)The series 
$$\sum_{1}^{\infty} \left(\frac{1+i}{1+2i}\right)^n$$
 is

- (a) absolutely convergent
- (b) convergent but not absolutely convergent
- (c) divergent by ratio test
- (d) divergent by preliminary test
- (e) divergent by comparison test

## **2.**(6 pts.) Compute all complex roots $(-1)^{1/7}$

- (a)  $e^{i(\pi/14)}, e^{i(5\pi/14)}, e^{i(9\pi/14)}, e^{i(13\pi/14)}, e^{i(17\pi/14)}, e^{i(21\pi/14)}, e^{i(25\pi/14)}$
- (b)  $e^{i(2\pi/7)}, e^{i(4\pi/7)}, e^{i(6\pi/7)}, e^{i(8\pi/7)}, e^{i(10\pi/7)}, e^{i(12\pi/7)}, e^{i(2\pi/7)}, e^{i(2\pi/7)$
- (c) 1, -1
- (d) 1, -1, i i
- (e)  $e^{i(\pi/7)}, e^{i(3\pi/7)}, e^{i(5\pi/7)}, e^{i\pi}, e^{i(9\pi/7)}, e^{i(11\pi/7)}, e^{i(13\pi/7)}$

Instructor: <u>Sample Test 2</u>, ACMS 20550

**3.**(6 pts.) Compute all values of  $\ln(1+i)$ 

(a) Ln 
$$2 + i \left(\frac{\pi}{4} \pm 2n\pi\right), n = 0, 1, 2, \cdots$$

(b) Ln 
$$\sqrt{2} + i\left(-\frac{\pi}{2} \pm 2n\pi\right), n = 0, 1, 2, \cdots$$

(c) Ln 
$$\sqrt{2} + i\left(-\frac{\pi}{4} \pm 2n\pi\right), n = 0, 1, 2, \cdots$$

(d) Ln 
$$\sqrt{2} + i\left(\frac{\pi}{4} \pm 2n\pi\right), n = 0, 1, 2, \cdots$$

(e) Ln 
$$\sqrt{2} + i\left(\frac{\pi}{2} \pm 2n\pi\right), n = 0, 1, 2, \cdots$$

**4.**(6 pts.) The disc of convergence of the series  $\sum_{1}^{\infty} 2^n z^n$  is

- (a)  $|z| < 1/\sqrt{2}$ , by ratio test
- (b) |z| < 1/2, by ratio test
- (c) |z| < 1, by ratio test
- (d) |z| < 2, by ratio test
- (e)  $|z| < \sqrt{2}$ , by ratio test

Name: \_\_\_\_\_

Instructor: <u>Sample Test 2</u>, ACMS 20550

5.(6 pts.) 
$$\int_{0}^{2\pi} e^{i(5x)} dx =$$
  
(a)  $\frac{2\pi i}{5}$  (b)  $-2\pi i$  (c)  $-\frac{2\pi i}{5}$   
(d)  $2\pi i$  (e) 0

6.(6 pts.) If 
$$z = 3x^4 - y^2$$
 and  $x = r \cos \theta$ ,  $y = r \sin \theta$ , find  $\left(\frac{\partial z}{\partial x}\right)_r$ .  
(a)  $12x^3 + 2x - 2r$  (b)  $12x^3 - 2x$  (c)  $12x^3 - 2y$   
(d)  $12x^3 + 2x$  (e)  $12x^3$ 

Name: \_\_\_\_

Instructor: Sample Test 2, ACMS 20550

**7.**(6 pts.) For *n* large, the expression  $\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}}$  can be approximated by

(a) 
$$\frac{1}{2n^{3/2}}$$
 (b)  $-\frac{1}{2n^{3/2}}$  (c)  $-\frac{1}{n^{3/2}}$   
(d)  $-\frac{2}{n^{3/2}}$  (e)  $\frac{1}{n^{3/2}}$ 

```
8.(6 pts.) By the second derivative test, if z = f(x, y) is twice differentiable, and

(a) \frac{\partial f}{\partial x}(a, b) = 0, \frac{\partial f}{\partial y}(a, b) = 0, and

(b) \frac{\partial^2 f}{\partial x^2} > 0, \frac{\partial^2 f}{\partial y^2} > 0, \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 > 0 at x = a, y = b.

Then
```

- (a) (x, y) = (a, b) is a point of relative minimum
- (b) (x,y) = (a,b) is a point of neither a relative minimum, nor a relative maximum
- (c) (x,y) = (a,b) is a point of relative maximum
- (d) (x, y) = (a, b) is a point of global maximum
- (e) (x,y) = (a,b) is a point with a non-horizontal tangent plane

Instructor: <u>Sample Test 2</u>, ACMS 20550

**9.**(6 pts.) Find the tangent line of  $xe^y + ye^x = 0$  at (0, 0).

- (a) y = x (b) y = 2x (c) y = -2x
- (d) y = 0 (e) y = -x

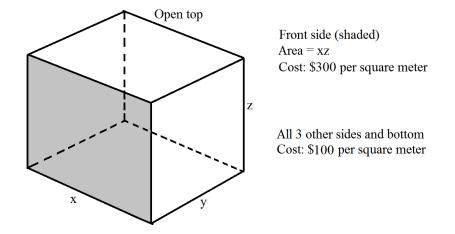
**10.**(6 pts.) If  $x^2 + y^2 = 2st - 10$  and  $2xy = s^2 - t^2$ , find  $\partial x / \partial t$ .

- (a)  $\frac{sx + ty}{x^2 y^2}$  (b)  $\frac{-sx + ty}{x^2 y^2}$  (c)  $\frac{sx ty}{x^2 y^2}$
- (d)  $\frac{sx + ty}{x^2 + y^2}$  (e)  $\frac{sx ty}{x^2 + y^2}$

Instructor: <u>Sample Test 2</u>, ACMS 20550

## Partial Credit

You must show your work on the partial credit problems to receive credit!


**11.**(15 pts.) Let  $z = \sqrt{x^2 + y^2}$ .

(a) Find the differential dz

(b) Using differential to approximate value of  $\sqrt{(3+w)^2 + (4-2w)^2}$  for small w (|w| < 0.1) using the result from (a)

Instructor: <u>Sample Test 2</u>, ACMS 20550

**12.**(15 pts.) A holding tank with **open top** is to be constructed to have a volume of 1 cube meters (i.e., xyz = 1). The bottom and the 3 sides are to be constructed with steel costing \$100 per square meter. One final side for viewing is to be constructed with glass costing \$300 per square meter.



(a) Write the formula for the cost function C(x, y, z). Then eliminate the variable z to have a function of x, y only.

(b) Find the value x, y and z that minimize the cost (Do not use 2nd derivative test).

Instructor: <u>Sample Test 2</u>, ACMS 20550

Partial Credit You must show your work on the partial credit problems to receive credit!

**13.**(10 pts.) Compute  $\int_{-\pi}^{\pi} \cos x \cdot \cos 2x \, dx$ Show all your work.