Sample Test 2

1a, 2e, 3d, 4b, 5e, 6d, 7b, 8a, 9e, 10a
Problem 11
Let $z=\sqrt{x^{2}+y^{2}}$.
(a) Find the differential $d z$

Sol.

$$
d z=\frac{x}{\sqrt{x^{2}+y^{2}}} d x+\frac{y}{\sqrt{x^{2}+y^{2}}} d y
$$

(b) Using differential to approximate value of $\sqrt{(3+w)^{2}+(4-2 w)^{2}}$ for small w ($|w|<0.1$) using the result from (a)

Sol. $x=3, y=4, d x=w, d y=-2 w$

$$
\begin{aligned}
\sqrt{(3+w)^{2}+(4-2 w)^{2}} & =\sqrt{3^{2}+4^{2}}+\frac{x}{\sqrt{x^{2}+y^{2}}} d x+\frac{y}{\sqrt{x^{2}+y^{2}}} d y \\
& =5+\frac{3}{5} w+\frac{4}{5}(-2 w) \\
& =5-w
\end{aligned}
$$

Problem 12,
A holding tank with open top is to be constructed to have a volume of 1 cube meters (i.e., $x y z=1$). The bottom and the 3 sides are to be constructed with steel costing $\$ 100$ per square meter. One final side for viewing is to be constructed with glass costing $\$ 300$ per square meter.

Front side (shaded)

Area $=x z$
Cost: $\$ 300$ per square meter

All 3 other sides and bottom Cost: $\$ 100$ per square meter
(a) Write the formula for the cost function $C(x, y, z)$. Then eliminate the variable z to have a function of x, y only.

Sol. Since $x y z=1, x z=\frac{1}{y}$ and $y z=\frac{1}{x}$

$$
C(x, y, z)=300 x z+100(2 y z+x y+x z)=400 x z+200 y z+100 x y=\frac{400}{y}+\frac{200}{x}+100 x y
$$

(b) Find the value x, y and z that minimize the cost (Do not use 2nd derivative test).

$$
\frac{\partial C}{\partial x}=-\frac{200}{x^{2}}+100 y=0, \quad \frac{\partial C}{\partial y}=-\frac{400}{y^{2}}+100 x=0
$$

Solving these equations we get $y=2, x=1$, and so $z=\frac{1}{x y}=\frac{1}{2}$.

Problem 13,
Compute $\int_{-\pi}^{\pi} \cos x \cdot \cos 2 x d x$
Show all your work.

Sol.
$\int_{-\pi}^{\pi} \cos x \cdot \cos 2 x d x=\int_{-\pi}^{\pi} \frac{e^{i x}+e^{-i x}}{2} \frac{e^{i 2 x}+e^{-i 2 x}}{2} d x=\frac{1}{4} \int_{-\pi}^{\pi}\left(e^{i 3 x}+e^{i x}+e^{-i x}+e^{-i 3 x}\right) d x$
This evaluates to 0 after finding anti-derivatives and plug in the upper and lower limit.

