\qquad Date \qquad

Math 10250 Activity 1: Functions and their Geometric Properties ${ }^{1}$ (Sec. 0.2-0.3)

GOAL: Understand the fundamental concept of function as a relation between variables expressed by a formula, a graph, or a table and use it to model change.
Q1: What is a variable? What is a function?
A1:

Example Assume that you have just deposited $\$ 500$ in your bank account at the ND Credit Union that pays annual interest 2% compounded daily, and you want to know what will be the balance at any future day. Use variables and functions to model it.

Exercise 1 Consider the function $f(x)=x^{2}+1$.
(a) Compute the following table of its values:

x	-3	-2	-1	0	1	2	3
$f(x)$							

(b) Compute $f(1+h)=$
(c) Find the (natural) domain of f.
(d) Find the range of f.
(e) Sketch the graph of f.

Exercise 2 What is the natural domain of $f(x)=\frac{5}{x^{2}-9}$?

Exercise 3 Which of the curves below:
(a) is the graph of a function
(b) is the graph of a 1-1 function

Figure 1

Figure 2

Figure 3

[^0]Exercise 4 Find the inverse of the function $f(x)=2 x+1$ and sketch its graph.

Exercise 5 For the function shown in Figure 2 determine where it is increasing and where it is decreasing.

Exercise 6 Is the function $f(x)=x^{4}-3 x^{2}$ even or odd? What about $f(x)=x^{3}+x$?

Exercise 7 For the the function $f(x)$, whose graph is shown in Figure 4, sketch the following vertical and horizontal translations
(a) $y=f(x)+3$
(b) $y=f(x)-1$
(c) $y=f(x-1)$
(d) $y=f(x+2)$
(e) $y=f(x+2)+3$
on the same system of Cartesian plane.

Figure 4
Exercise 8 Sketch the graph of the functions $y=x^{2}$ and $y=(x-3)^{2}+1$.

[^0]: ${ }^{1}$ Alex Himonas \& Alan Howard: Calculus, Ideas and Applications, Wiley (2003).

