\qquad Date \qquad
Math 10250 Activity 2: Linear and Quadratic Functions (sect. 0.4 and 0.5)
GOAL: Understand the concept of slope for lines and linear functions and learn how to visualize quadratic functions by completing the square.

- A linear function is a function of the form

$$
f(x)=\underset{\substack{\uparrow \\ \text { slope }}}{m x} x+\underset{\substack{\uparrow \text {-intercept }}}{b} \quad \text { where } m \text { and } b \text { are given numbers }
$$

- Slope $=m=$

Exercise 1 Find the slope of the line passing through $(-1,1)$ and $(2,7)$.

Figure 1

- Equation of line passing through a point $\left(x_{1}, y_{1}\right)$ and with a given slope m :

 If (x, y) is another point on the line then $\frac{y-y_{1}}{x-x_{1}}=m$. So we have point-slope form :Exercise 2 Find the equation of the line through $(-1,1)$ and with slope 2.

Exercise 3 A small surf shop has fixed expenses of $\$ 850$ per month. Each surfboard costs $\$ 100$ to make and sells for $\$ 550$.
(a) Write the monthly cost, revenue, and profit as functions of the number x of surfboards made. Cost function $=C(x) \stackrel{?}{=}$

Revenue function $=R(x) \stackrel{?}{=}$

Profit function $=P(x) \stackrel{?}{=}$
(b) Find the break-even point.

Exercise 4 The demand curve of bread in a bakery shop is $q=D(p)=-50(p-5)$ and its supply curve is $q=S(p)=50(p-1)$, where the price p is in dollars and the quantity q is in loaves. Find the equilibrium price p_{e} and equilibrium quantity q_{e}.

- A quadratic function is a function of the form $f(x)=a x^{2}+b x+c$, where $a \neq 0, b$ and c are given numbers. It always can be written in the informative form $f(x)=a(x-h)^{2}+k$, which is a horizontal translation by h and a vertical translation by k of the simple parabola $f(x)=a x^{2}$.

Exercise 5 Consider the quadratic function $f(x)=-x^{2}+6 x-5$.
(i) Complete the square to write it in the form $f(x)=a(x-h)^{2}+k$.

Figure 2
(ii) Use (i) to decide whether $f(x)$ has a minimum value or a maximum value and where it is taken.
(iii) Use (i) to find the roots of $f(x)$.
(iv) Determine the axis of symmetry and the y-intercept and sketch the graph of $f(x)$.

Exercise 6 A furniture company making oak desks has a fixed cost of $\$ 5,000$ per month and a cost per desk of $\$ 500$. Find how many desks per month it should produce to maximize its profit if the price is given by $p=1000-2.5 x$, where x denotes the number of oak desks produced by the company.

Exercise 7 Consider the quadtratic $f(x)=x^{2}-5 x+4$.
(a) Find its zeros using the quadratic formula: $x=-b \pm \sqrt{ }$
(b) Factor it.
(c) Determine the sign of $f(x)$.

