Math 10250 Activity 4: Limits (Sect. 1.1)

GOAL: To obtain an intuitive understanding of the fundamental concept of limit and learn rules for computing it.

Q1: Using your intuition, how would you interpret the statement: The function $f(x) = \frac{x^2 - 2x - 3}{x - 3}$ has limit 4 as x goes to 3?

A1: -Natural domain of f: ______.

-Since f is not defined at x=3, let's look at how f behaves <u>near</u> x=3. To do this, we make a table of values like this:

x	2.97	2.98	2.99	3	3.01	3.02	3.03
$f(x) = \frac{x^2 - 2x - 3}{x - 3}$?			

Pattern: f(x) gets close to ____ as x gets close to 3.

-To make this more precise we need the help of algebra. So, let us factor the numerator of f:

$$f(x) = \frac{x^2 - 2x - 3}{x - 3} =$$

Sketch of y = f(x):

-Now, we are confident to claim that the limit of f(x) as x goes to 3 is 4.

-We write this as: $\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3} = 4.$

Q2: Give an Informal Definition of Limit

A2:

Exersise 1 The graph of a function f is shown in Figure 2. By inspecting the graph, find each of the following limits if it exists. If the limit does not exist, explain why.

(ii)
$$\lim_{x \to -1} f(x) \stackrel{?}{=}$$

(iii)
$$\lim_{x\to 2} f(x) \stackrel{?}{=}$$

(iv)
$$\lim_{x\to 0} f(x) \stackrel{?}{=}$$

(v)
$$\lim_{x\to 3} f(x) \stackrel{?}{=}$$

Figure 2

Exersise 2 Find $\lim_{x\to 2} \frac{x^2-4}{x-2}$. Complete the following table of values to guess the limit and then use algebra to justify it (as in **A2**).

x	1.9	1.99	1.999	2	2.001	2.01	2.1
$\frac{x^2-4}{}$?			
x-2							

Q3: What are the basic Limit Laws?

A3:

Exercise 3 Determine the following limits using the properties of limits (i.e. limit laws) and simplifying the expression, if necessary.

(i)
$$\lim_{x\to 5} x^4 \stackrel{?}{=}$$

(ii)
$$\lim_{x\to 2} (5x^3 + 4x^2) \stackrel{?}{=}$$

(iii)
$$\lim_{x \to 2} (5x^3 + 4x^2) \cdot (x^2 - 9) \stackrel{?}{=}$$

(iv)
$$\lim_{x\to 2} \frac{x^2 - 9}{x - 3} \stackrel{?}{=}$$

(v)
$$\lim_{h\to 0} \frac{(h-2)^2-4}{h} \stackrel{?}{=}$$

Exercise 4 If f(x) is the function of exercise 1 and g(x) = 3x + 2 then find the following limits:

(i)
$$\lim_{x \to 2} [f(x) \cdot g(x)] \stackrel{?}{=}$$

Ans. 24

(ii)
$$\lim_{x\to 2} \sqrt{f(x)} \stackrel{?}{=}$$

Ans. 2