\qquad
\qquad

Math 10250 Activity 4: Limits (Sect. 1.1)

GOAL: To obtain an intuitive understanding of the fundamental concept of limit and learn rules for computing it.
Q1: Using your intuition, how would you interpret the statement: The function $f(x)=\frac{x^{2}-2 x-3}{x-3}$ has limit 4 as x goes to 3 ?

A1: -Natural domain of f : \qquad .
-Since f is not defined at $x=3$, let's look at how f behaves near $x=3$. To do this, we make a table of values like this:

x	2.97	2.98	2.99	3	3.01	3.02	3.03
$f(x)=\frac{x^{2}-2 x-3}{x-3}$				$?$			

Pattern: $f(x)$ gets close to \qquad as x gets close to 3 .
-To make this more precise we need the help of algebra. So, let us factor the numerator of f : $f(x)=\frac{x^{2}-2 x-3}{x-3}=$

Sketch of $y=f(x)$:

-Now, we are confident to claim that the limit of $f(x)$ as x goes to 3 is 4 .
-We write this as: $\quad \lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}=4$.

Q2: Give an Informal Definition of Limit

A2:

Exersise 1 The graph of a function f is shown in Figure 2. By inspecting the graph, find each of the following limits if it exists. If the limit does not exist, explain why.
(i) $\lim _{x \rightarrow 4} f(x) \stackrel{?}{=}$
(ii) $\lim _{x \rightarrow-1} f(x) \stackrel{?}{=}$
(iii) $\lim _{x \rightarrow 2} f(x) \stackrel{?}{=}$
(iv) $\lim _{x \rightarrow 0} f(x) \stackrel{?}{=}$
(v) $\lim _{x \rightarrow 3} f(x) \stackrel{?}{=}$

Figure 2

Exersise 2 Find $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$. Complete the following table of values to guess the limit and then use algebra to justify it (as in A2).

x	1.9	1.99	1.999	2	2.001	2.01	2.1
$\frac{x^{2}-4}{x-2}$				$?$			

Q3: What are the basic Limit Laws?

A3:

Exercise 3 Determine the following limits using the properties of limits (i.e. limit laws) and simplifying the expression, if necessary.
(i) $\lim _{x \rightarrow 5} x^{4} \stackrel{?}{=}$
(ii) $\lim _{x \rightarrow 2}\left(5 x^{3}+4 x^{2}\right) \stackrel{?}{=}$
(iii) $\lim _{x \rightarrow 2}\left(5 x^{3}+4 x^{2}\right) \cdot\left(x^{2}-9\right) \stackrel{?}{=}$
(iv) $\lim _{x \rightarrow 2} \frac{x^{2}-9}{x-3} \stackrel{?}{=}$
(v) $\lim _{h \rightarrow 0} \frac{(h-2)^{2}-4}{h} \stackrel{?}{=}$

Exercise 4 If $f(x)$ is the function of exercise 1 and $g(x)=3 x+2$ then find the following limits:
(i) $\lim _{x \rightarrow 2}[f(x) \cdot g(x)] \stackrel{?}{=}$
(ii) $\lim _{x \rightarrow 2} \sqrt{f(x)} \stackrel{?}{=}$

