\qquad
\qquad
Math 10250 Activity 5: One-sided and Infinite Limits (sect. 1.1 cont. \& sect. 1.2)
GOAL: To learn about the limit of a function $f(x)$ as x approaches to a number a from one side (left or right), get an understanding of infinite limits and relate them to vertical asymptotes.

- One-sided limits

Example 1 For the function $y=f(x)$ whose graph is shown in Figure 1, find (by visual inspection) the indicated one-sided limits (if they exist) and determine whether the limit of $f(x)$ exists at the given values of x.
(i) $\lim _{x \rightarrow-1^{-}} f(x) \stackrel{?}{=} \lim _{\text {Left-hand limit }}^{\uparrow} f(x) \stackrel{?}{=} \overbrace{x \rightarrow-1^{+}} \quad f(-1) \stackrel{?}{=}$
(ii) $x=0$
(iii) $x=1$

Figure 1
(iv) $x=3$

Fact: $\lim _{x \rightarrow a} f(x)=L \quad$ if and only if

Example 2 Find $\lim _{t \rightarrow 1^{+}} \frac{t^{2}-1}{\sqrt{t-1}}$.

Example 3 If $f(x)$ is the function of example 1 and $g(x)=8 x-1$ then find the following one-sided limits:
(i) $\lim _{x \rightarrow 1^{+}}[f(x) \cdot g(x)] \stackrel{?}{=}$
(ii) $\lim _{x \rightarrow 1^{-}} \frac{f(x)}{g(x)} \stackrel{?}{=}$

- Explain the meaning of the infinite limits:
- $\lim _{x \rightarrow a} f(x)=\infty$
- $\lim _{x \rightarrow a} f(x)=-\infty$
- $\lim _{x \rightarrow a^{+}} f(x)=\infty($ or $-\infty)$
- $\lim _{x \rightarrow a^{-}} f(x)=\infty($ or $-\infty)$

Example 4 For the function whose graph is shown in Figure 2 determine its limiting behavior as x approaches each of the points:
(i) $x=-2$
(ii) $x=0$
(iii) $x=2$
(iv) $x=4$,
and find its vertical asymptotes.

Figure 2
Example 5 $\lim _{t \rightarrow 3} \frac{1}{(x-3)^{2}} \stackrel{?}{=}$

Example 6 $\lim _{x \rightarrow 3} \frac{x}{x^{2}-9} \stackrel{?}{=}$

