\qquad
\qquad
Math 10250 Activity 6: Limits...(sect. 1.2 cont.), and Continuity (sect. 1.3)
GOAL: Understand behavior of functions at $\pm \infty$ and horizontal asymptotes. For rational functions the behavior at $\pm \infty$ is determined by the leading tearms.

- Limits at infinity and horizontal asymptotes

- We say that $\lim _{x \rightarrow \infty} f(x)=L$ if \ldots
- We say that $\lim _{x \rightarrow-\infty} f(x)=L$ if \ldots
- We say that $y=L$ is horizontal asymptote if

Example 1 For the function shown in Figure 1 find:
(i) $\lim _{x \rightarrow \infty} f(x) \stackrel{?}{=} \quad$ and
(ii) $\lim _{x \rightarrow-\infty} f(x) \stackrel{?}{=}$

Also, find the horizontal asymptotes.

Figure 1

Example 2

(i) $\lim _{x \rightarrow \infty} \frac{x^{2}+x}{3 x^{2}+7} \stackrel{?}{=}$
(ii) $\lim _{x \rightarrow-\infty} \frac{4 x^{3}+7 x^{2}}{x^{4}+2} \stackrel{?}{=}$
(iii) $\lim _{x \rightarrow \infty} \frac{x^{3}-2}{x^{2}+1} \stackrel{?}{=}$

Example 3 A company estimates that when it spends x million dollars to advertise its product, its annual revenue R, in millions of dollars, is modeled by the function $R(x)=400-\frac{800}{x+5}$.
(i) Compute $\lim _{x \rightarrow 0} R(x)$ and $\lim _{x \rightarrow \infty} R(x)$, and draw the graph of $R(x)$.

$$
\lim _{x \rightarrow 0} R(x)=240 \text { and } \lim _{x \rightarrow \infty} R(x)=400
$$

(ii) If the company is currently spending 35 million on advertising, would you recommend increasing it to 40 million?

- Idea of Continuity: A function is continuous if you never have to lift your pencil while drawing its graph. The discontinuities are where you have to lift your pencil.

Definition of continuity

A function $f(x)$ is continuous at a point a in its domain if 1. $\lim _{x \rightarrow a} f(x)$
2. $\lim _{x \rightarrow a} f(x) \stackrel{?}{=}$

Example 4 Referring to the function f, whose graph is shown in Figure 2, find all the discontinuities of f in the interval $(-1.2,7.2)$:

Figure 2

