Name

Date

Math 10250 Activity 6: Limits...(sect. 1.2 cont.), and Continuity (sect. 1.3)

GOAL: Understand behavior of functions at $\pm \infty$ and horizontal asymptotes. For rational functions the behavior at $\pm \infty$ is determined by the leading tearms.

▶ Limits at infinity and horizontal asymptotes

- We say that $\lim_{x \to \infty} f(x) = L$ if \cdots
- We say that $\lim_{x \to -\infty} f(x) = L$ if \cdots
- We say that y = L is **horizontal asymptote** if

Example 1 For the function shown in Figure 1 find: (i) $\lim_{x \to \infty} f(x) \stackrel{?}{=}$ and (ii) $\lim_{x \to -\infty} f(x) \stackrel{?}{=}$.

Also, find the horizontal asymptotes.

Example 2 (i) $\lim_{x \to \infty} \frac{x^2 + x}{3x^2 + 7} \stackrel{?}{=}$

(ii)
$$\lim_{x \to -\infty} \frac{4x^3 + 7x^2}{x^4 + 2} \stackrel{?}{=}$$

(iii)
$$\lim_{x \to \infty} \frac{x^3 - 2}{x^2 + 1} \stackrel{?}{=}$$

Example 3 A company estimates that when it spends x million dollars to advertise its product, its annual revenue R, in millions of dollars, is modeled by the function $R(x) = 400 - \frac{800}{x+5}$.

(i) Compute $\lim_{x \to 0} R(x)$ and $\lim_{x \to \infty} R(x)$, and draw the graph of R(x). $\lim_{x \to 0} R(x) = 240$ and $\lim_{x \to \infty} R(x) = 400$

(ii) If the company is currently spending 35 million on advertising, would you recommend increasing it to 40 million?

► Idea of Continuity: A function is continuous if you never have to lift your pencil while drawing its graph. The discontinuities are where you have to lift your pencil.

	A function $f(x)$ is continuous at a point a in its domain if
Definition of	1. $\lim_{x \to a} f(x) $
$\operatorname{continuity}$	$2. \lim_{x \to a} f(x) \stackrel{!}{=}$

Example 4 Referring to the function f, whose graph is shown in Figure 2, find all the discontinuities of f in the interval (-1.2, 7.2):

Figure 2