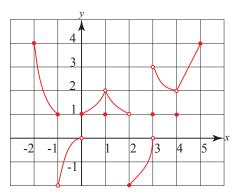
Date

## Math 10250 Activity 7: Continuity (Sec. 1.3)

**GOAL:** Understand the concept of continuity and its basic properties, including the intermediate value theorem.

Idea of Continuity: A function is continuous if you never have to lift your pencil while drawing its graph. The **discontinuities** are where you have to lift your pencil, i.e, at places where there are **gaps** or **holes**.

**Example 1** Referring to the function f, whose graph is shown in Figure 1, find all the discontinuities of f in the interval [-2, 5].





|               | A function $f(x)$ is continuous at a point $a$ in its domain if |
|---------------|-----------------------------------------------------------------|
| Definition of | 1. $\lim_{x \to a} f(x)$                                        |
| continuity    | $2. \lim_{x \to a} f(x) = \dots$                                |

**Fact:** If f and g are continuous functions at a then

$$cf(x), \quad f(x) + g(x), \quad f(x) \cdot g(x) \quad \text{and} \quad \frac{f(x)}{g(x)} \text{ where } g(a) \neq 0 \text{ are continuous at } a \in \mathbb{C}$$

From this fact we get:

1 Polynomials are continuous everywhere. 2 <u>polynomial</u> is continuous \_\_\_\_\_ rational function

**Example 2** Determine where the following functions are continuous.

(a) 
$$f(x) = 2x^5 - 3x^2 + 4x - 15$$
  
(b)  $f(x) = \frac{x^3 + 1}{x^2 + 25}$   
(c)  $f(x) = \frac{x^3 + 1}{x^2 - 25}$   
(d)  $f(x) = \begin{cases} \frac{x^2 - 4}{x + 2}, & \text{if } x \neq -2\\ 0, & \text{if } x = -2 \end{cases}$ 

**Example 3** Find the number c that makes  $f(x) = \begin{cases} \frac{x^3 - 27}{x - 3}, & \text{if } x \neq 3 \\ c, & \text{if } x = 3 \end{cases}$  continuous for every x.

Ans. c = 27

## ▶ The intermediate value theorem and zeros of functions

**Intermediate Value Theorem (IVT):** If f is continuous on [a, b] and k is any number between f(a) and f(b) then there is at least one number c in [a, b] such that f(c) = k.

Picture:

**Existence of Zeros Theorem:** Take the above situation where f(a) and f(b) have opposite signs.

Picture:

Then by IVT, there is at least one number c in (a, b) such that f(c) = 0. This helps us find zeros of functions (i.e roots).

**Example 4** Suppose a continuous function f(x) satisfies the following table of values:

| x    | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3  | 4  |
|------|----|----|----|----|---|---|---|----|----|
| f(x) | -2 | -3 | -2 | -1 | 1 | 2 | 1 | -1 | -2 |

How many roots can you be sure of f(x) having on the interval (-4, 4), and where they are located.

**Example 5** Does the equation  $x^4 + 8x^3 - x^2 - 4x - 1 = 0$  have a root inside the interval (0, 1)?

**Problem** Explain why there was a time between the day you were born and today when your height in inches (say 21) was equal to your weight in pounds (say 7).