\qquad

Math 10250 Activity 8: Exponential Functions (sect. 2.1)

GOAL: Learn exponential functions with different bases and use them to model real-world situtations.

- Exponential functions are of the form : $f(x)=b^{x}$, where $b>0$ is called base, like $f(x)=2^{x}$. Q1: Where do they appear?
A1: Everywhere! For example, if we put $\$ 1$ in an account paying 5% interest, compounded annually, then t years later it will become $f(t)=(1.05)^{t}$, which is an exponential function with base $b=1.05$.
- The laws of exponents. For $b>0$ and u and v any numbers, we have
(1) $b^{u+v} \stackrel{?}{=}$
$; \quad$ e.g., $2^{3+2} \stackrel{?}{=}$
and $2^{3} \cdot 2^{2} \stackrel{?}{=}$
(2) $b^{u-v} \stackrel{?}{=}$
; e.g., $2^{3-2} \stackrel{?}{=}$
and $\frac{2^{3}}{2^{2}} \stackrel{?}{=}$
(3) $b^{r u} \stackrel{?}{=}$
for any real number r;
e.g., $2^{3 \cdot 2} \stackrel{?}{=}$
and $\left(2^{2}\right)^{3} \stackrel{?}{=}$
(4) $b^{0} \stackrel{?}{=}$
(5) $b^{-v} \stackrel{?}{=} \quad ; \quad$ e.g., $2^{-2} \stackrel{?}{=}$

Example 1 If $b^{u}=2$ and $b^{v}=3$ then $b^{u-v} \stackrel{?}{=}$

- Graph of $y=b^{x}$

Case 1: $\quad b>1 \quad$ Case 2: $0<b<1$
For example, $\quad y=2^{x}$.
(i) Complete the table below:

x	-1	-0.5	0	0.5	1
2^{x}	0.5		1		2
Truncate answers to 2 decimal places					

(ii) Plot the points and sketch graph:

(iii) Properties of b^{x} when $b>1$:

- $b^{0} \stackrel{?}{=}$
- domain $\stackrel{?}{=} \quad$ range $\stackrel{?}{=}$
- $\lim _{x \rightarrow-\infty} b^{x} \stackrel{?}{=} \quad \lim _{x \rightarrow \infty} b^{x} \stackrel{?}{=}$
- Asymptote:

For example, $\quad y=(1 / 2)^{x}$.
(i) Complete the table below:

x	-1	-0.5	0	0.5	1
$(1 / 2)^{x}$	2		1		0.5

(ii) Plot the points and sketch graph:

(iii) Properties of b^{x} when $0<b<1$:

- $b^{0} \stackrel{?}{=}$
- domain $\stackrel{?}{=} \quad$ range $\stackrel{?}{=}$
- $\lim _{x \rightarrow-\infty} b^{x} \stackrel{?}{=} \quad \lim _{x \rightarrow \infty} b^{x} \stackrel{?}{=}$
- Asymptote:

- Three applications of the exponential function

1 Compound interest

Example 1 If $\$ 1,000$ is invested in an account paying 5% interest, how much will it grow to in 10 year if the interest is compounded monthly?
$\begin{array}{ll}\text { - Annual rate }=r \stackrel{?}{=} & \text { (in decimals) } \\ \text { - Compounding rate }=\frac{r}{n} \stackrel{?}{=} & \text { - Time }=t \stackrel{?}{=} \\ \text { (in years) }\end{array}$
At the end of 1st period have: \qquad
At the end of 2 nd period have: \qquad
At the end of 3th period have: \qquad

At the end of nth period have: \qquad
Interest compounded 12 times a year over t years
At the end of 1 year (12 periods) have: \qquad
At the end of 2 years (24 periods) have: \qquad

At the end of t years have: \qquad

General formula:

$$
A(t)=P\left(1+\frac{r}{n}\right)^{t n}
$$

Example 2 If $\$ 8,000$ is invested in an account paying 3% interest, how much will it grow to in 15 years if the interest is compounded quarterly?

2 Population Growth (with unlimited resources) $\quad P(t)=P_{0} b^{t}$
Example 3 A certain bacteria culture grows exponentially. In 1 hour the population grows from
300,000 to 500,000 . Write a formula expressing the population P as a function of the time t in hours.

5 Decay of radioactive substances:

$$
y=y_{0} b^{t}
$$

Example 4 Radon gas decays according to the formula $y=y_{0}(0.835)^{t}$, where t is measured in days. If there are 500 cubic centimeters left after 7 days, how much was there to begin with?

