Name

Date

Math 10250 Activity 8: Exponential Functions (sect. 2.1)

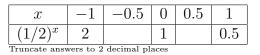
GOAL: Learn exponential functions with different bases and use them to model real-world situations. **Exponential functions** are of the form : $f(x) = b^x$, where b > 0 is called **base**, like $f(x) = 2^x$. Q1: Where do they appear?

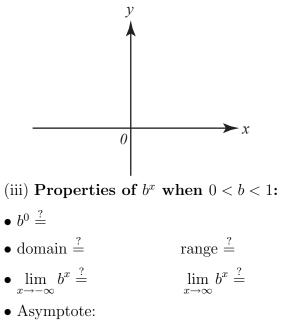
A1: Everywhere! For example, if we put \$1 in an account paying 5% interest, compounded annually, then t years later it will become $f(t) = (1.05)^t$, which is an exponential function with base b = 1.05.

▶ The laws of exponents. For b > 0 and u and v any numbers, we have

; e.g., $2^{3+2} \stackrel{?}{=}$ (1) $b^{u+v} \stackrel{?}{=}$ and $2^3 \cdot 2^2 \stackrel{?}{=}$ and $\frac{2^3}{2^2} \stackrel{?}{=}$; e.g., $2^{3-2} \stackrel{?}{=}$ (2) $b^{u-v} \stackrel{?}{=}$ (3) $b^{ru} \stackrel{?}{=}$ for any real number r; e.g., $2^{3\cdot 2} \stackrel{?}{=}$ and $(2^2)^3 \stackrel{?}{=}$ (4) $b^0 \stackrel{?}{=}$ (5) $b^{-v} \stackrel{?}{=}$; e.g., $2^{-2} \stackrel{?}{=}$ **Example 1** If $b^u = 2$ and $b^v = 3$ then $b^{u-v} \stackrel{?}{=}$ • Graph of $y = b^x$ Case 1: Case 2: 0 < b < 1b > 1For example, $y = 2^x$. (i) Complete the table below:

x	-1	-0.5	0	0.5	1	
2^x	0.5		1		2	
Truncate answers to 2 decimal places						


(ii) Plot the points and sketch graph:


- (iii) Properties of b^x when b > 1:
- $b^0 \stackrel{?}{=}$
- range $\stackrel{?}{=}$ • domain $\stackrel{\prime}{=}$
- $\lim b^x \stackrel{?}{=}$ $\lim b^x \stackrel{?}{=}$
- Asymptote:

For example, $y = (1/2)^x$.

(i) Complete the table below:

(ii) Plot the points and sketch graph:

▶ Three applications of the exponential function

1 Compound interest

3 Decay of radioactive substances:

Example 1 If \$1,000 is invested in an account paying 5% interest, how much will it grow to in 10 year if the interest is compounded monthly?

• Annual rate = $r \stackrel{?}{=}$	(in decimals)	• Compounding	per year = $n \stackrel{?}{=}$
• Compounding rate $=\frac{r}{n}\stackrel{?}{=}$		• Time = $t \stackrel{?}{=}$	(in years)
At the end of 1st period have	:		
At the end of 2nd period have	2:		
At the end of 3th period have \vdots	::		
At the end of nth period have	:		
Interest compounded 12 times a	year over t years		
At the end of 1 year (12 period	ods) have:		
At the end of 2 years (24 peri :	ods) have:		
At the end of t years have:			
General formula:	$A(t) = P\left(1 + \frac{r}{r}\right)$		
Example 2 If \$8,000 is invester years if the interest is compounded		interest, how much	h will it grow to in 15
 2 Population Growth (with unli Example 3 A certain bacteria 300,000 to 500,000. Write a for 	culture grows exponentially		0

Example 4 Radon gas decays according to the formula $y = y_0(0.835)^t$, where t is measured in days. If there are 500 cubic centimeters left after 7 days, how much was there to begin with?

 $y = y_0 b^t$

 $y_0 = 500(0.835)^{-7}$