Name ____

Date

Math 10250 Activity 9: Compound Interest and the Number e (Sec. 2.2)

Last time: Let A(t) be the balance at time t (years) of a bank account earning interest at an annual rate r (in decimals) compounded n times a year. Then we have:

$$A(t) = P\left(1 + \frac{r}{n}\right)^{tn}$$

where P is the principal i.e. A(0) = P.

Example 1 The balance M(t) of a retirement account with interest compounded daily is given by the formula $M(t) = 30000(1.00022)^{365t}$. What is the principal and the annual interest rate?

(Ans: P = \$30000; r = 8%)

Next, we want to consider the balance of an account where interest is compounded continuously i.e. we are earning interest every instant the money is with the bank. (Good deal?)

\blacktriangleright The number e

In the general formula above, if P = 1, r = 1 and t = 1 then $A(1) = \left(1 + \frac{1}{n}\right)^n$. Letting n go to ∞ we obtain that:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \stackrel{?}{=} \qquad .$$
 \leftarrow balance at end of 1 yr. of an investment of \$1 at an annual interest rate of 100% compounded continuously

Example 2 Estimate e by completing the table:

n	1	2	10	100	1000
$\left(1+\frac{1}{n}\right)^n$					

Continuously compounded interest

Compute the limit:

$$\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n = =$$

$$\stackrel{\uparrow}{\underset{\text{letting } m = n/r, \text{ so that } n = mr}{} =$$

$$\stackrel{\uparrow}{\underset{\text{by definition of } n}{}}$$

Setting: As above except now $n \to \infty$

The amount after t years with **continuously compounded interest** is:

$$A(t) = \lim_{n \to \infty} P\left(1 + \frac{r}{n}\right)^{tn} = P \cdot \lim_{n \to \infty} \left[\int_{n \to \infty}^{t} \left[\frac{A(t) = Pe^{rt}}{r} \right]^{\leftarrow (rate)(time in years)} + \frac{A(t) = Pe^{rt}}{r}$$

Example 3 If you open an account paying 9% interest, compounded continuously, then how much should you deposit to insure that there will be \$60,000 in 15 years? Ans. $_{60,000e^{-1.35}}$

Example 4
$$\lim_{n \to \infty} \left(1 + \frac{1}{2n} \right)^{3n} \stackrel{?}{=}$$
 Ans. $e^{3/2}$

Example 5 Suppose you put \$5000 in an account paying 4% annual interest, and you leave it there without adding or withdrawing anything. How much will you have at the end of 3 years if the interest is compounded:

- (a) 6 times a year?
 - (b) 24 times a year?
 - (c) continuously?

Remark: What could you conclude from the answers obtained in Example 5?

▶ The natural exponential function

Recall: The exponential function is $f(x) = b^x$, where b is a positive constant. The most **popular** b is e. **Definition:** The **natural exponential function** is $f(x) = e^x$.

Example 6 Graph the natural exponential function and its inverse. Write down all intercepts and asymptotes of the natural exponential function.

Ans. \$5,637.48

Ans. \$5,636.92