\qquad
\qquad
Math 10250 Activity 9: Compound Interest and the Number e (Sec. 2.2)
Last time: Let $A(t)$ be the balance at time t (years) of a bank account earning interest at an annual rate r (in decimals) compounded n times a year. Then we have:

$$
A(t)=P\left(1+\frac{r}{n}\right)^{t n}
$$

where P is the principal i.e. $A(0)=P$.
Example 1 The balance $M(t)$ of a retirement account with interest compounded daily is given by the formula $M(t)=30000(1.00022)^{365 t}$. What is the principal and the annual interest rate?
(Ans: $P=\$ 30000 ; r=8 \%$)
Next, we want to consider the balance of an account where interest is compounded continuously i.e. we are earning interest every instant the money is with the bank. (Good deal?)

- The number e

In the general formula above, if $P=1, r=1$ and $t=1$ then $A(1)=\left(1+\frac{1}{n}\right)^{n}$.
Letting n go to ∞ we obtain that:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \stackrel{?}{=} \quad \leftarrow \text { balance at end of } 1 \text { yr. of an investment of } 81 \text { at an annual interest rate of } 100 \% \text { compounded continuously }
$$

Example 2 Estimate e by completing the table:

n	1	2	10	100	1000
$\left(1+\frac{1}{n}\right)^{n}$					

Continuously compounded interest

Compute the limit:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}= \\
& \uparrow \\
& \text { letting } m=n / r \text {, so that } n=m r
\end{aligned}
$$

$$
=\quad=
$$

$$
\uparrow
$$

$$
\text { by definition of } e
$$

Setting: As above except now $n \rightarrow \infty$
The amount after t years with continuously compounded interest is:

$$
A(t)=\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{t n}=\quad=P \cdot \lim _{n \rightarrow \infty}[\quad]^{t}=
$$

Example 3 If you open an account paying 9% interest, compounded continuously, then how much should you deposit to insure that there will be $\$ 60,000$ in 15 years?

Example 4 $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{3 n} \stackrel{?}{=}$

Example 5 Suppose you put $\$ 5000$ in an account paying 4% annual interest, and you leave it there without adding or withdrawing anything. How much will you have at the end of 3 years if the interest is compounded:
(a) 6 times a year?
(b) 24 times a year?

Ans. $\$ 5,636.92$
(c) continuously?

Remark: What could you conclude from the answers obtained in Example 5?

- The natural exponential function

Recall: The exponential function is $f(x)=b^{x}$, where b is a positive constant. The most popular b is e. Definition: The natural exponential function is $f(x)=e^{x}$.

Example 6 Graph the natural exponential function and its inverse. Write down all intercepts and asymptotes of the natural exponential function.

