\qquad
\qquad

Math 10250 Activity 10: Logarithmic Functions (Sec. 2.3)

GOAL: Learn logarithmic functions as inverses of exponential functions and use them to model various interesting situations, like intensity of earthquake, noise level, and acidity of beer.
Q1: What "undoes" the exponential function $f(x)=b^{x}$? (e.g. If $f(x)=2^{x}$ then $3 \stackrel{f}{\mapsto} 2^{3}=8$)
A1: The logarithmic function with base \boldsymbol{b}, denoted $\log _{b}$. (If $g(x)=\log _{2} x$ then $8 \stackrel{g}{\mapsto} \log _{2} 8=3$)
Definition: $\log _{b}($ for $b>0, b \neq 1)$ is defined by

$$
\log _{b} x=y \quad \Leftrightarrow
$$

Example 1 Express the following logarithms as an integer or fraction without using a calculator.
(a) $\log _{3} 9$
(b) $\log _{(0.1)} 1000$

- The graph of $\log _{b} x$ for $b>1$:

As an example, first graph $y=2^{x}$ and obtain the graph of $y=\log _{2} x$.
Properties of logarithmic functions

- $\log _{b} 1 \stackrel{?}{=}$
- domain $\stackrel{?}{=} \quad$ and range $\stackrel{?}{=}$
- It's continuous and increasing.
- $\lim _{x \rightarrow \infty} \log _{b} x \stackrel{?}{=} \quad$ and $\lim _{x \rightarrow 0^{+}} \log _{b} x \stackrel{?}{=}$

Note: The most common choices for b are $10, e$ and 2 .

- The laws of logarithms. (Reversing the laws of exponents) Let $s, t>0$. Then
(1) $\log _{b}(s t) \stackrel{?}{=}$ $; \quad$ e.g., $\log _{2}(3 \cdot 8) \stackrel{?}{=}$
(2) $\log _{b}\left(\frac{s}{t}\right) \stackrel{?}{=}$; e.g., $\log _{2}\left(\frac{3}{8}\right) \stackrel{?}{=}$
(3) $\log _{b}\left(t^{r}\right) \stackrel{?}{=}$ for any number r; e.g., $\log _{2}\left(3^{7}\right) \stackrel{?}{=}$
(4) $\log _{b} 1 \stackrel{?}{=}$
(5) $\log _{b}\left(\frac{1}{t}\right) \stackrel{?}{=} \quad ; \quad$ e.g., $\log _{2}\left(\frac{1}{8}\right) \stackrel{?}{=}$

Q2: Can you explain property (1)?
A2:

Example 2 Use the approximation $\log _{10} 0.5 \approx-0.301$ to estimate $\log _{10} 20$.

Example 3 Use the approximation $\log _{2} 3 \approx 1.585$ and $\log _{2} 5 \approx 2.322$ to estimate $\log _{2} 45$.

Example 4 Suppose A and b are positive numbers with $\log _{3} A=b$. Write $\log _{3}\left(\frac{3}{\sqrt[3]{A}}\right)$ in terms of b.

Example 5 A bank teller claims that a saving account with principal of $\$ 1000$ earning interest at a annual rate of 1.3%, compounded weekly, after T years would at least double. What is the smallest possible T in whole years?

- Logarithms with base 10

Logarithms with base 10, called common logarithms, are used in many well-known applications.
1 The Richter scale

$$
\text { Richter value }=\log _{10}\left(\frac{x}{A}\right),
$$

where A is the amplitude of the seismic wave of a reference earthquake and x is the amplitude of the seismic wave of the earthquake in question.

Example 6 One of the worst earthquakes in history occured in Tokyo and registered 8.3 on the Richter scale. A more recent earthquake in California in 1989 registered 7.2. How much more severe was the earthquake in Tokyo in terms of the amplitude of its seismic wave?

2 The decibel scale

$$
\text { Noise level in decibels }=10 \log _{10}\left(\frac{x}{I}\right)
$$

where I is the amplitude of a minimal audible sound wave and x is the amplitude of another sound wave. Read Text Example 2.3.3 (Pg 141).

3 The pH scale $\quad \mathrm{pH}$ value $=-\log _{10}\left[\mathrm{H}^{+}\right]$,
where $\left[\mathrm{H}^{+}\right]$is the concentration of hydrogen ions in a solution. Read Text Example 2.3.4 (Pg 142).

