Date

Math 10250 Activity 11: Natural Logarithm and Applications (Sec. 2.4)

GOAL: Define the **natural** Logarithmic function ln x as the inverse of the **natural** exponential function, $f(x) = e^x$ and use it to solve equations when the unknown is an exponent as is the case when we need to determine doubling time or half-life time.

Last time: We met the logarithmic function with base b. Recall, $\log_b x = y \Leftrightarrow x > 0$

Q1: What do we get when we let b = e?

A1: The natural logarithm, $\ln x = \log_e x$, x > 0. Therefore $\ln x = y$ x > 0. \Leftrightarrow

• Since $\ln x$ is the **inverse** of e^x have the following two useful formulas:

 $e^{\ln x} =$ $\ln(e^x) =$ any xand x > 0.

Sketch the graph of $\ln x$:

Q2: What are the **basic properties of** $\ln x$?

and range $\stackrel{?}{=}$ A2: • domain $\stackrel{?}{=}$

- It's continuous and increasing.
- $\lim_{x \to \infty} \ln x \stackrel{?}{=}$ and $\lim_{x \to 0^+} \ln x \stackrel{?}{=}$. $\ln 1 \stackrel{?}{=}$, $\ln e \stackrel{?}{=}$, and $\ln(1/e) \stackrel{?}{=}$

Example 1 Sketch the graph of $y = \ln(3 + x)$.

Example 2 Solve $e^{3-2x} = 8$ for x.

\blacktriangleright Converting exponentials from base b to base e

Q3: How do we convert b^x to $e^{(\text{something})}$?

A3: Using $b = e^{\ln b}$ we have the conversion formula: $b^x = (b^x)^{-1}$ $)^{x} =$

Example 3 Rewrite $\sqrt[3]{7}$ as an exponential with base *e*.

Example 4 Evaluate the given expression as a number in decimal form without using a calculator. (a) $\ln\left(\frac{1}{\sqrt[4]{e}}\right)$ (b) $e^{2\ln 3}$

▶ Exponential growth and decay

Recall: In Section 2.1 we saw that the equation for exponential growth and decay was:

 $y = y_0 b^t.$ Since $b^x = e^{(\ln b)x}$ we can rewrite this as $y = y_0 e^{(\ln b)t}.$ • If b > 1 then $\ln b =$ growth constant. \leftarrow exponential growth • If 0 < b < 1 then $\ln b < 0$. $|\ln b| =$ decay constant. \leftarrow exponential decay

Example 6 If \$10,000 is deposited in an account paying 5% interest per year, compounded continuously, how long will it take for the balance to reach \$20,000?

Example 7 Polonium-210 has a decay constant of 0.004951, with time measured in days. How long does it take a given quantity of polonium-210 to decay to half the initial amount? In other words, what is the half-life of polonium-210?

Fact: For any radioactive substance: Half-life = .

Example 8 A bacteria culture starts with 500 bacteria and is growing exponentially. After 3 hours there are 8000 bacteria.

(a) Find a formula of the form $y = Ae^{kt}$ for the number of bacteria after t hours.

(b) Find the number of bacteria after 4 hours.

(c) When will the population reach 30,000?