\qquad Date \qquad
Math 10250 Activity 11: Natural Logarithm and Applications (Sec. 2.4)
GOAL: Define the natural Logarithmic function $\ln x$ as the inverse of the natural exponential function, $f(x)=e^{x}$ and use it to solve equations when the unknown is an exponent as is the case when we need to determine doubling time or half-life time.
Last time: We met the logarithmic function with base b. Recall, $\log _{b} x=y \Leftrightarrow \quad, x>0$.
Q1: What do we get when we let $\boldsymbol{b}=\boldsymbol{e}$?
A1: The natural logarithm, $\ln x=\log _{e} x, x>0$. Therefore $\ln x=y \quad \Leftrightarrow \quad, \quad x>0$.

- Since $\ln \boldsymbol{x}$ is the inverse of $\boldsymbol{e}^{\boldsymbol{x}}$ have the following two useful formulas:

$$
\ln \left(e^{x}\right)=\quad, \quad \text { any } x \quad \text { and } \quad e^{\ln x}=\quad, \quad x>0
$$

Sketch the graph of $\ln x$:

Q2: What are the basic properties of $\ln \boldsymbol{x}$?
A2:

- domain $\stackrel{?}{=}$
and range $\stackrel{?}{=}$
- It's continuous and increasing.
- $\lim _{x \rightarrow \infty} \ln x \stackrel{?}{=} \quad$ and $\lim _{x \rightarrow 0^{+}} \ln x \stackrel{?}{=}$
$\bullet \ln 1 \stackrel{?}{=} \quad, \ln e \stackrel{?}{=} \quad$, and $\ln (1 / e) \stackrel{?}{=}$

Example 1 Sketch the graph of $y=\ln (3+x)$.

Example 2 Solve $e^{3-2 x}=8$ for x.

- Converting exponentials from base b to base e

Q3: How do we convert b^{x} to $e^{\text {(something) }}$?
A3: Using $\boldsymbol{b}=\boldsymbol{e}^{\ln \boldsymbol{b}}$ we have the conversion formula: $b^{x}=(\quad)^{x}=$
Example 3 Rewrite $\sqrt[3]{7}$ as an exponential with base e.

Example 4 Evaluate the given expression as a number in decimal form without using a calculator.
(a) $\ln \left(\frac{1}{\sqrt[4]{e}}\right)$
(b) $e^{2 \ln 3}$

Example 5 Simplify $e^{\ln (5 x)+\ln (2 / x)}$.

- Exponential growth and decay

Recall: In Section 2.1 we saw that the equation for exponential growth and decay was:

$$
y=y_{0} b^{t} .
$$

Since $b^{x}=e^{(\ln b) x}$ we can rewrite this as

$$
y=y_{0} e^{(\ln b) t} .
$$

- If $b>1$ then $\ln b=$ growth constant. \leftarrow exponential growth
- If $0<b<1$ then $\ln b<0 .|\ln b|=$ decay constant. \leftarrow exponential decay

Example 6 If $\$ 10,000$ is deposited in an account paying 5% interest per year, compounded continuously, how long will it take for the balance to reach $\$ 20,000$?

Example 7 Polonium-210 has a decay constant of 0.004951 , with time measured in days. How long does it take a given quantity of polonium-210 to decay to half the initial amount? In other words, what is the half-life of polonium-210?

Fact: For any radioactive substance: Half-life $=$
Example 8 A bacteria culture starts with 500 bacteria and is growing exponentially. After 3 hours there are 8000 bacteria.
(a) Find a formula of the form $y=A e^{k t}$ for the number of bacteria after t hours.
(b) Find the number of bacteria after 4 hours.
(c) When will the population reach 30,000 ?

