\qquad

Math 10250 Activity 13: The Derivative of a Function (Sec. 3.2)

GOAL: To understand that the slope of the graph of a function $f(x)$ is dependent on x. The function that gives the slope of the graph of $f(x)$ is called the derivative of $f(x)$. We will also learn about some basic properties of the derivative, and the derivatives of power functions and polynomial.
Example 1 For the function $y=f(x)$ whose graph is shown, compute or estimate the following values:

Slope of the tangent line to the graph of $f(x)$ at $x=2 \stackrel{?}{=}$
Slope of the graph of $f(x)$ at $x=4 \stackrel{?}{=}$
Instantaneous rate of change of $f(x)$ at $x=6 \stackrel{?}{=}$
Rate of change of $f(x)$ at $x=-1 \stackrel{?}{=}$

Remark: The slope of the graph of $f(x)$ or rate of change of $f(x)$ varies according to x. This gives us a new function called the derivative of $f(x)$. We denote the derivative of $f(x)$ by $f^{\prime}(x)$.

Find the following values for the function in Example 1:
$f^{\prime}(1) \stackrel{?}{=}$
$f^{\prime}(2) \stackrel{?}{=}$
$f^{\prime}(4) \stackrel{?}{=}$
$f^{\prime}(6) \stackrel{?}{=}$
$f^{\prime}(-1) \stackrel{?}{=}$

Difference Quotient and Leibniz's notation

Recall that the limit definition of the rate of change of $f(x)$. Then we have:
Derivative of $f(x)=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Difference quotient $=\frac{f(x+h)-f(x)}{h}=\frac{\text { Change in } y}{\text { Change in } x}=\frac{\Delta y}{\Delta x}$
So $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\underset{\substack{\text { Leibniz's notation }}}{ }$

We also write: $\quad f^{\prime}(x)=\frac{d y}{d x}=\frac{d}{d x}[f(x)]$
Other Notations for the Derivative
For each fixed value a in the domain of $f(x)$, we can also write:
$f^{\prime}(a)=$

Example 2 Suppose that $f(x)$ is a function whose graph goes through the point $(1,5)$ and whose tangent line at that point has the equation $2 x+y=7$. Without computing, find each of the following limits:
(a) $\lim _{h \rightarrow 0} \frac{f(1+h)-5}{h} \stackrel{?}{=}$
(b) $\lim _{\Delta x \rightarrow 0} \frac{f(1+\Delta x)-5}{\Delta x} \stackrel{?}{=}$
(c) $\lim _{x \rightarrow 1} \frac{f(x)-5}{x-1} \stackrel{?}{=}$

Example 3 Use the definition of derivative and no other formula to find $f^{\prime}(x)$ where $f(x)=\frac{1}{x}=x^{-1}$.

Rules for finding derivatives: (Notations: $\left.\quad f^{\prime}(x)=(f(x))^{\prime}=\frac{d}{d x}[f(x)]\right)$
0. The derivative of a constant is zero: $(c)^{\prime} \stackrel{?}{=} \quad$ e.g. $(8)^{\prime} \stackrel{?}{=} \quad$ or $(\sqrt{2})^{\prime} \stackrel{?}{=}, \quad$ or $(e)^{\prime} \stackrel{?}{=}$

1. The Power Rule $\quad\left(x^{m}\right)^{\prime} \stackrel{?}{=} \quad$ e.g. $\left(x^{5}\right)^{\prime} \stackrel{?}{=} \quad$ or $\left(x^{-0.8}\right)^{\prime} \stackrel{?}{=}$
2. The Constant Multiple Rule $\frac{\frac{d}{d x}[c f(x)] \stackrel{?}{=}}{\text { constant }}$ e.g. $\left(3 x^{5}\right)^{\prime} \stackrel{?}{=}$
3. The Sum Rule $\frac{d}{d x}[f(x)+g(x)] \stackrel{?}{=}$ e.g. $\left(x^{2}-5 x+4\right)^{\prime} \stackrel{?}{=}$

Q2: Explain why is Sum Rule true.
A2:

Example 4 $\frac{d}{d x}\left[2 x^{4}+3 x^{-3}-\frac{\pi}{e}\right] \stackrel{?}{=}$

Example 5 Find the equation of the line tangent to the graph $y=x^{3}-2 x$ at $x=2$.

