Name

Date

Math 10250 Activity 16: Differentiability and Linear Approximation (Sec. 3.4)

GOAL: To approximate the a differentiable function near a given point x = a with the equation of its tangent line (a simpler linear function) at x = a. Discuss continuity verses differentiablity.

▶ Differentiability A function f(x) is said to be differentiable if each point of its graph has a non-vertical tangent line. This means that the slope at each point of the graph is a _____ number.

Graphically, differentiable means that each small segment of the graph of f(x) is almost identical to a straight line. This is illustrated in Figure 1 through 3 below. As you zoom into the point (a, f(a)), the segment of the graph of f(x) near point a becomes more and more like its tangent line at x = a.

Q1: Referring to Figure 3, what is the equation of tangent line to the graph of y = f(x) at (a, f(a))?

Since the graph of f(x) near point a is almost the same as its tangent line at x = a, we have:

 $f(x) \approx$. \leftarrow Linear approximation of f(x) near point a

Remark: If f(x) is a differentiable function at x = a, the **two** values f(a) and f'(a) allow us to estimate the value of f(x) when x is close to a!!

Example 1 (a) Find the tangent line to $f(x) = x^2$ at x = 2.

(b) Give the tangent line approximation of f(x) near 2.

(c) Using your answer in (b), estimate the following values and comment on their accurancy:

(i) $f(2.01) \stackrel{?}{\approx}$ (ii) $f(1.9) \stackrel{?}{\approx}$ (iii) $f(3) \stackrel{?}{\approx}$

Example 2 Apply linear approximation to the function $f(x) = x^{1/2}$ to estimate $\sqrt{25.5}$.

Example 3 Use tangent line approximation to estimate $\sqrt[3]{26.31}$.

Example 4 The cost of producing 200 units of a certain item is \$5,000, and the marginal cost of producing 200 units is \$100. Use linear approximation to estimate the cost of producing 202 units.

▶ Differentiability and continuity

Example 5 According to figure 6, a) f(x) is discontinuous at $x \stackrel{?}{=}$ b) f(x) is not differentiable at $x \stackrel{?}{=}$

Definition: A function f(x) is differentiable at point x = a if the graph of f(x) has a non-vertical tangent line at (a, f(a)). In terms of slope and limits, this means that

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 exists and is a finite number

Example 6 (a) Sketch the graph of f(x) = |x| and decide by visual inspection whether f(x) is differentiable at x = 0.

(b) Now, use the limit definition to decide whether f(x) is differentiable at x = 0.

Remark: f(x) = |x| is a function that is continuous but NOT differentiable.

Q2: Can a differentiable function not be continuous? A2:

Theorem. If a function f is differentiable at a, then it is continuous at a.