Name \qquad Date \qquad

Math 10250 Activity 16: Differentiability and Linear Approximation (Sec. 3.4)

GOAL: To approximate the a differentiable function near a given point $x=a$ with the equation of its tangent line (a simpler linear function) at $x=a$. Discuss continuity verses differentiablity.

- Differentiability A function $f(x)$ is said to be differentiable if each point of its graph has a nonvertical tangent line. This means that the slope at each point of the graph is a \qquad number.

Graphically, differentiable means that each small segment of the graph of $f(x)$ is almost identical to a straight line. This is illustrated in Figure 1 through 3 below. As you zoom into the point $(a, f(a))$, the segment of the graph of $f(x)$ near point a becomes more and more like its tangent line at $x=a$.

Q1: Referring to Figure 3, what is the equation of tangent line to the graph of $y=f(x)$ at $(a, f(a))$?

Since the graph of $f(x)$ near point a is almost the same as its tangent line at $x=a$, we have:
$f(x) \approx \quad \leftarrow$ Linear approximation of $f(x)$ near point a

Remark: If $f(x)$ is a differentiable function at $x=a$, the two values $f(a)$ and $f^{\prime}(a)$ allow us to estimate the value of $f(x)$ when x is close to $a!!$

Example 1 (a) Find the tangent line to $f(x)=x^{2}$ at $x=2$.
(b) Give the tangent line approximation of $f(x)$ near 2.

(c) Using your answer in (b), estimate the following values and comment on their accurancy:
(i) $f(2.01) \stackrel{?}{\sim}$
(ii) $f(1.9) \stackrel{?}{\sim}$
(iii) $f(3) \stackrel{?}{\approx}$

Example 2 Apply linear approximation to the function $f(x)=x^{1 / 2}$ to estimate $\sqrt{25.5}$.

Example 3 Use tangent line approximation to estimate $\sqrt[3]{26.31}$.

Example 4 The cost of producing 200 units of a certain item is $\$ 5,000$, and the marginal cost of producing 200 units is $\$ 100$. Use linear approximation to estimate the cost of producing 202 units.

- Differentiability and continuity

A continuous function is NOT differentiable if the graph has a corner or a vertical tangent line

Figure 4

Figure 5

Figure 6

Example 5 According to figure 6, a) $f(x)$ is discontinuous at $x \stackrel{?}{=}$
b) $f(x)$ is not differentiable at $x \stackrel{?}{=}$

Definition: A function $f(x)$ is differentiable at point $x=a$ if the graph of $f(x)$ has a non-vertical tangent line at $(a, f(a))$. In terms of slope and limits, this means that

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \quad \text { exists and is a finite number }
$$

Example 6 (a) Sketch the graph of $f(x)=|x|$ and decide by visual inspection whether $f(x)$ is differentiable at $x=0$.
(b) Now, use the limit definition to decide whether $f(x)$ is differentiable at $x=0$.

Remark: $f(x)=|x|$ is a function that is continuous but NOT differentiable.
Q2: Can a differentiable function not be continuous? A2:
Theorem. If a function f is differentiable at a, then it is continuous at a.

