\qquad
Math 10250 Activity 18: The Product and Quotient Rules (Sec. 3.6)
GOAL: To learn how to compute the derivatives of a product and a quitient of two functions.

- The Product Rule: $\quad \frac{d}{d x}[f(x) \cdot g(x)]=$

Note: $\frac{d}{d x}[f(x) \cdot g(x)]=\frac{d}{d x}[g(x) \cdot f(x)]$.
Example 1 Use the product rule to find the derivatives:
(a) $\frac{d}{d x}\left[x^{2}\left(3 x^{3}-x\right)\right]$
(b) $\frac{d}{d x}\left[e^{-2 x} \ln x\right]$

- The Quotient Rule: $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=$ \qquad
In general, $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right] \neq \frac{d}{d x}\left[\frac{g(x)}{f(x)}\right]$.
Example 2 Find the equation of the tangent line to the graph of $y=\frac{x}{x^{2}+1}$ at the point $x=2$.

Example 3 Use the appropriate differentiation rule you learned so far to find the derivatives below. Some algebra may be helpful.
(a) $\frac{d}{d x}\left(\frac{x^{2}+x-3}{100}\right)$
(c) $\frac{d}{d x}\left(\frac{\ln x}{x^{2}}\right)$
(b) $\frac{d}{d x}\left(\frac{x+e^{x}}{e^{x}}\right)$
(d) $\frac{d}{d x}\left(\frac{x^{2}+x-3}{x^{10}}\right)$

Example 4 Suppose the demand for a certain product is given by $q=f(p)$, where p is the price per unit and q is the number sold. The revenue is given by $R=p q$.
(a) If $f(300)=20,000$ and $f^{\prime}(300)=-30$, find $d R / d p$ when $p=300$.
(b) If the product is currently selling for $\$ 300$ per unit, should the company increase or decrease the price in order to raise the revenue?

Example 5 For what x does the graph $y=x e^{x}$ have slope zero?
Ans: $x=-1$

Example 6 Find the equation of the tangent line to the graph of $y=\frac{1-\ln x}{1+\ln x}$ at $x=1$. Ans: $y=-2 x+3$

Example 7 Let $p(x)=f(x) g(x)$ and $q(x)=\frac{f(x)}{g(x)}$. Using the graph of $f(x)$ and $g(x)$ find (a) $p^{\prime}(a)$

(b) $q^{\prime}(a)$

Ans: $p^{\prime}(a)=20$ and $q^{\prime}(a)=0.4$

