Name _____

Date

Math 10250 Activity 18: The Product and Quotient Rules (Sec. 3.6)

GOAL: To learn how to compute the derivatives of a product and a quitient of two functions.

► The Product Rule: $\frac{d}{dx}[f(x) \cdot g(x)] = \frac{d}{dx}[g(x) \cdot f(x)].$ Example 1 Use the product rule to find the derivatives: $(a) \frac{d}{dx}[x^{2}(3x^{3} - x)]$ $(b) \frac{d}{dx}[e^{-2x} \ln x]$ $(c) \frac{d}{dx}[e^{-2x} \ln x]$ $= 1 \text{ In general, } \frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] \neq \frac{d}{dx}\left[\frac{g(x)}{f(x)}\right].$

Example 2 Find the equation of the tangent line to the graph of $y = \frac{x}{x^2 + 1}$ at the point x = 2.

Example 3 Use the appropriate differentiation rule you learned so far to find the derivatives below. Some algebra may be helpful.

(a)
$$\frac{d}{dx} \left(\frac{x^2 + x - 3}{100} \right)$$

(b) $\frac{d}{dx} \left(\frac{x + e^x}{e^x} \right)$
(c) $\frac{d}{dx} \left(\frac{\ln x}{x^2} \right)$
(d) $\frac{d}{dx} \left(\frac{x^2 + x - 3}{x^{10}} \right)$

Example 4 Suppose the demand for a certain product is given by q = f(p), where p is the price per unit and q is the number sold. The revenue is given by R = pq.

(a) If f(300) = 20,000 and f'(300) = -30, find dR/dp when p = 300.

(b) If the product is currently selling for \$300 per unit, should the company increase or decrease the price in order to raise the revenue?

Example 5 For what x does the graph $y = xe^x$ have slope zero?

Ans: x = -1

Example 6 Find the equation of the tangent line to the graph of $y = \frac{1 - \ln x}{1 + \ln x}$ at x = 1. Ans: y = -2x + 3

Example 7 Let p(x) = f(x)g(x) and $q(x) = \frac{f(x)}{g(x)}$. Using the graph of f(x) and g(x) find (a) p'(a)

(b) q'(a)

