\qquad

Math 10250 Activity 19: The Chain Rule (Sec. 3.7)

GOAL: To learn how to compute the derivative of a composition of two functions.
Q1: What rule would you use to compute the following derivatives:
(a) $\left[\frac{x^{2}+1}{x+1}\right]^{\prime}$ \qquad (c) $\left[\left(x^{2}+1\right) \pi\right]^{\prime}$
(d) $\left[\left(x^{2}+1\right) \pi^{x}\right]^{\prime}$
(b) $\left[\frac{x^{2}+1}{e+1}\right]^{\prime}$ \qquad (e) $\left[\ln \left(x^{2}+1\right)\right]^{\prime}$
\qquad
\qquad
\qquad

- The Composite Function. A function $h(x)$ is said to be a composite function of $g(x)$ followed by $f(x)$ if $h(x)=f(g(x))$. We may write:

$h: x \stackrel{g}{\longmapsto}$

\qquad $\stackrel{f}{\longmapsto}$ \qquad

Example 1 Find functions $f(x)$ and $g(x)$, not equal x, such that $h(x)=f(g(x))$:
(a) $h(x)=\left(x^{4}+2 x^{2}+7\right)^{21}$
$h: x \stackrel{g}{\longmapsto}$ \qquad $\stackrel{f}{\longmapsto}$ \qquad
Ans: $f(x) \stackrel{?}{=}$ \qquad and $\quad g(x) \stackrel{?}{=}$ \qquad
(b) $h(x)=e^{x^{2}+1}$

$$
h: x \longmapsto \longrightarrow
$$

\qquad
Ans: $f(x) \stackrel{?}{=}$ \qquad and $\quad g(x) \stackrel{?}{=}$ \qquad

- The Chain Rule

Q2: In a SMS (short message service) competition for the title of "Fastest SMS Thumbs", it is observed that Competitor A inputs text three times faster than B, and Competitor B inputs text two times faster than C. How much faster is Competitor A than Competitor C? Why?

Suppose $y=f(g(x))$. To find a formula for $\frac{d y}{d x}=\frac{d}{d x}[f(g(x))]$, we set $u=g(x)$ then $y=f(u)$.

Our guess is in fact correct, and the formula for $\frac{d y}{d x}$ is called the Chain Rule (in Leibniz notation).
But $\frac{d y}{d x}=\frac{d}{d x}[f(g(x))]=[f(g(x))]^{\prime}, \frac{d y}{d u}=f^{\prime}(u)=f^{\prime}(g(x))$ and $\frac{d u}{d x}=g^{\prime}(x)$. Thus we also have:

$$
\frac{d}{d x}[f(g(x))]=[f(g(x))]^{\prime}=
$$

Example 2 Find the derivatives:
(a) $\left[\ln \left(x^{2}+1\right)\right]^{\prime} \stackrel{?}{=}$
(b) $\left[\left(x^{4}+2 x^{2}+7\right)^{21}\right]^{\prime} \stackrel{?}{=}$
(c) $\left[x \ln \left(2+e^{x}\right)\right]^{\prime} \stackrel{?}{=}$
(d) $\left[e^{x^{2}+1}\right]^{\prime} \stackrel{?}{=}$

Example 3 For what x does the graph of $y=e^{\frac{1}{3} x^{3}-4 x}$ have slope zero?

Example 4 Let $f(x)=\frac{g\left(x^{2}\right)}{\sqrt{x+1}}$. Find the slope of the graph of $f(x)$ at $x=3$.

x	$g(x)$	$g^{\prime}(x)$
3	5	2
4	0	7
9	-2	3

Example 5 Let $A(x)=g(f(x))$ and $B(x)=g(g(x))$. Use the graph of $f(x)$ and $g(x)$ to compute each of the following derivatives if it exists. If it does not exist, explain why.
(a) $A^{\prime}(1) \stackrel{?}{=}$
(b) $B^{\prime}(1) \stackrel{?}{=}$

Ans: One of them does not exist. Why?

Example 6 Diatoms are microscopic algae surrounded by a silica shell that are found both in salt and fresh water, and they are a major source of atmospheric oxygen. The size of a diatom colony depends on many factors, including temperature. Suppose that samples taken in a midwestern lake showed that the concentration of diatoms was modeled as a function of temperature by the equation

$$
C=1.4-e^{-0.001 h^{2}} \quad \text { for } 0<h<40
$$

where C is the concentration of diatoms (in millions per cubic centimeter) and h is the temperature of the water (in degrees Celsius).
(a) $\frac{d C}{d h} \stackrel{?}{=}$
(b) Suppose the temperature of the lake is 10° and falling at the rate of 2 degrees per hour. At what rate is the concentration of diatoms changing with respect to time?

