\qquad Date \qquad
Math 10250 Activity 21: First Derivative Tests (Sec. 4.1)

GOAL: To use information given by $f^{\prime}(x)$ to find where $f(x)$ is increasing and decreasing, and to locate maxima and minima.

- The derivative test for increasing and decreasing functions

Q1: What does f^{\prime} tell us about f ?

Figure 1

A1: - If $f^{\prime}(x)>0$ for $\alpha<x<\beta$, then $f(x)$ is \qquad for $\alpha<x<\beta$.

- If $f^{\prime}(x)<0$ for $\alpha<x<\beta$, then $f(x)$ is \qquad for $\alpha<x<\beta$.
- Determining the sign of $f^{\prime}(x)$

What we have seen thus far: To find where f is increasing or decreasing, we need to find where $f^{\prime}(x)$ is positive and negative. To do this, we start by finding the critical points of $f(x)$.

Definition: Critical points of the function f are points c in the domain of f where (a) or (b) does not exist.

Q2: Where are the critical points of the function $f(x)$ in Figure 1. Label them c_{1}, c_{2}, \cdots
Remark: The only possible places (of x) where $f^{\prime}(x)$ changes signs are at (i) critical points or at (ii) where the graph has a vertical asymptote or undefined.

Example 1 Find all values of x for which $f(x)=x^{3}+3 x^{2}-9 x+3$ is increasing or decreasing with the steps outlined below.

Step 1: Find all critical points of f. (That is all points c in the domain where $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.)

Step 2: Find points where f have a vertical asymptote or undefined. Answer: \qquad
Step 3: Draw a number line, mark all points found in Steps 1 and 2, and find the sign of $f^{\prime}(x)$ in each intervals between marked points.

Step 4: Write down the values of x for which f is increasing $\left(f^{\prime}(x)>0\right)$ and those for which f is decreasing $\left(f^{\prime}(x)<0\right)$.

- First derivative test for maxima and minima

Definitions: Let c be a point in the domain of a function $f(x)$.

- $f(x)$ has a local minimum (or relative minimum) at c if \qquad for all x in an interval around c.
- $f(x)$ has a local maximum (or relative maximum) at c \lesssim local extrema if \qquad for all x in an interval around c.
- $f(x)$ has a global minimum (or absolute minimum) at c if $f(c) \leq f(x)$ for all x in the domain of f.
- $f(x)$ has a global maximum (or absolute maximum) at c ¿ global extrema if $f(c) \geq f(x)$ for all x in the domain of f.

Example 2 Consider the following graph and locate all local and global extrema.

local minima: \qquad
local maxima: \qquad
global minima: \qquad
global maxima: \qquad

Fact: Critical points are the only candidates for extrema. But you may have a critical point that's not an extremum.

The first derivative test for maxima and minima
If $f(x)$ has a critical point at c, then

- there is a local maximum at $x=c$ if $f^{\prime}(x)$ changes its sign from positive to negative, and
- there is a local minimum at $x=c$ if $f^{\prime}(x)$ changes its sign from negative to positive.

Example 3 Find all critical points of the given function and use the derivative to determine where the function is increasing, where it is decreasing, and where it has a local maximum and minimum, if any.
(a) $f(x)=x^{2} e^{x}$
(b) $f(x)$ is such that the graph of the derivative of $f(x)$ is given below.

