\qquad
Math 10250 Activity 22: First Derivative Tests (4.1 continued)
GOAL: To use information given by $f^{\prime}(x)$ to find where $f(x)$ is increasing and decreasing, and to locate maxima and minima.

First, let's review what we learned last time.

- The derivative test for increasing and decreasing functions

Method for finding where a function f is increasing/decreasing

1. Find all critical points of f. (That is, find all points in domain where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.)
2. Find points where f has a vertical asymptote or is undefined.
3. Plot points in 1 and 2 on x-axis (making intervals).
4. Take one point a on each interval and compute $f^{\prime}(a)$. The sign of $f^{\prime}(a)$ is the sign of f^{\prime} throughout that interval.
5. f is increasing on intervals where f^{\prime} is \qquad . f is decreasing on intervals where f^{\prime} is

Example 1 Find all values of x for which $f(x)=\frac{1}{x^{2}-x}$ is increasing or decreasing with the steps outlined below.

Step 1: Find all critical points of f. (That is all points c in the domain where $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.)

Step 2: Find points where f have a vertical asymptote or undefined. Answer: \qquad
Step 3: Draw a number line, mark all points found in Steps 1 and 2, and find the sign of $f^{\prime}(x)$ in each intervals between marked points.

Step 4: Write down the values of x for which f is increasing $\left(f^{\prime}(x)>0\right)$ and those for which f is decreasing $\left(f^{\prime}(x)<0\right)$.

The first derivative test for maxima and minima
If $f(x)$ has a critical point at c, then

- there is a local maximum at $x=c$ if $f^{\prime}(x)$ changes its sign from \qquad to \qquad , and
- there is a local minimum at $x=c$ if $f^{\prime}(x)$ changes its sign from \qquad . \qquad
Example 2 In Example 1, where does $f(x)$ have a local maximum or local minimum, if any?

Example 3 Sketch the graphs of two different functions sharing the same properties below. The graphs should have at least one feature that is markedly different.

- $f^{\prime}(x)<0$ on $(-\infty, 0)$ or $(2, \infty)$.
- $f^{\prime}(0)=0$ but $f^{\prime}(2)$ does not exist.
- $f^{\prime}(x)>0$ on (0,2).
- $\lim _{x \rightarrow+\infty} f(x)=2=\lim _{x \rightarrow-\infty} f(x)$.
- $f(0)=0$ and $f(2)=4$.

- Global Maximum and Global Minimum

Q1: How can we determine the global maximum or global minimum of a given function?
A1: One way is to study how the function increases and decreases.
Example 4 Find the local and global extrema, if any, of $f(x)=x^{2} e^{-x}$ for $-\infty<x<\infty$.
Step 1: Find all critical points of f.

Step 2: Find points where f have a vertical asymptote or undefined. Answer: \qquad
Step 3: Find the values of $f(x)$ at all critical points, and behavior of $f(x)$ at $\pm \infty$.

Step 4: Give a rough sketch of the graph of $f(x)$ indicating clearly where f is increasing and decreasing.

Step 5: Read off all global maxima and global minima from the sketch above. If there are none state so.

