$\qquad$ Date $\qquad$

## Math 10250 Activity 25: Sketching Graphs (Section 4.3)

GOAL: To apply techniques in algebra and calculus to obtain a detail sketch a graph of a given function.
Example 1 Sketch the graph of $f(x)=x e^{-x^{2} / 2}$ by completing the steps below.
a. Find all $x$-intercepts and $y$-intercept of the graph of $f(x)$ whenever possible.
b. Find coordinates of all critical points, vertical asymptotes, and places where $f(x)$ are undefined.
c. Determine where $f(x)$ is increasing and where it is decreasing.
d. Determine the concavity and coordinates of inflection points of $f(x)$.
$\left(f^{\prime \prime}(x)=\left(x^{3}-3 x\right) e^{-x^{2} / 2}\right)$
e. Find all asymptotes and limit at infinity whenever applicable. Check for any symmetry.
f. Sketch the graph below labeling all important features. Your picture should be large and clear.

Example 2 Sketch the graph of $g(x)=\frac{x}{x^{2}-4}$ by completing the steps below.
a. Find all $x$-intercepts and $y$-intercept of the graph of $g(x)$ whenever possible.
b. Find coordinates of all critical points, vertical asymptotes, and places where $g(x)$ are undefined.
c. Determine where $g(x)$ is increasing and where it is decreasing.
d. Determine the concavity and coordinates of inflection points of $g(x) .\left(g^{\prime \prime}(x)=\frac{\left(24+2 x^{2}\right) x}{\left(x^{2}-4\right)^{3}}=\frac{24+2 x^{2}}{\left(x^{2}-4\right)^{2}} \cdot \frac{x}{x^{2}-4}\right)$
e. Find all asymptotes and limit at infinity whenever applicable. Check for any symmetry.
f. Sketch the graph below labeling all important features. Your picture should be large and clear.

