Math 10250 Activity 27: Optimization (Sect. 4.4 cont.) and Applied Optimization Problems (Sect. 4.5)

GOAL: To find maximum and minimum of a function over an interval with one or both endpoints.

▶ Case 1: Optimizing f(x) on a closed interval (Done in last class)

Example 1 Find the global maximum and minimum of the function $f(x) = xe^{-x/2}$ for [1,4]. Give a sketch of the graph of f(x) clearly indicating where the global maximum and minimum are.

▶ Case 2: Optimizing f(x) on an interval with one or both endpoints excluded (i.e., on $(a, b], (-\infty, b], [a, \infty), (-\infty, \infty), ...)$ - Global maximum and minimum may or may not exist.

Example 2 Using the steps below, find the global maximum and minimum of the function $f(x) = xe^{-x/2}$ on $[1, \infty)$.

Step 1: Find all critical points in the domain of f(x) and the values of f(x) there. Classify them using first derivative test.

Step 2: Find all asymptotes of f(x) in its domain and determine its asymptotic behavior.

Step 3: Find the values of f(x) at the end-points (if any) of its domain.

Step 4: Give a rough sketch of the graph of f(x) clearly indicating where the global maximum and minimum are. Stating the global maximum and minimum of f(x) on $[1, \infty)$ if any.

Q1: How does Example 2 contrast with Example 1?

A1:

Example 3 Find the global maximum and minimum of the $f(x) = x^4 - 8x^2$ on $(-\infty, 1)$.

Step 1: Find all critical points in the domain of f(x) and the values of f(x) there. Classify them using first derivative test.

Step 2: Find all asymptotes of f(x) in its domain and determine its asymptotic behavior.

Step 3: Find the values of f(x) at the end-points (if any) of its domain.

Step 4: Give a rough sketch of the graph of f(x) clearly indicating where the global maximum and minimum are. Stating the global maximum and minimum of f(x) on $(-\infty, 1)$ if any.

NEXT GOAL: To use our optimization methods to solve word problems.

Example 4 A restaurant owner discovers from the sales of an octopus dish that its average number of order q each night is given by $p = \frac{72}{q+2}$ where p is the price in dollars of an order of the dish. Suppose that each appetizer costs the restaurant \$4 to make. Help the owner of the restaurant with the following calculation:

- (a) Write down the revenue function.
- (b) What is the largest amount of revenue the restaurant can make from the appetizer?

(c) What price should the owner charge in order to maximize profit from the appetizer?