\qquad

Math 10250 Activity 32: Integration by Parts and Partial Fraction Decomposition (Section 5.3)

GOAL: To find integrals using Integration by Parts and Partial Fraction decomposition.

- Integration by parts

IDEA: Recall that Integration by Substitution "reverses" chain rule. Today we learn another technique, called integration by parts, which "reverses" the product rule.

- Let $u(x)$ and $v(x)$ be two differentiable functions. Applying product rule, we have:

$$
\frac{d}{d x}(u(x) v(x))=u(x) v^{\prime}(x)+u^{\prime}(x) v(x)
$$

- By definition of anti-derivative:

$$
u(x) v(x)=\quad=\int u(x) v^{\prime}(x) d x+\int u^{\prime}(x) v(x) d x
$$

- Rearranging terms, we have:

$$
\int u(x) v^{\prime}(x) d x=u(x) v(x)-\int v(x) u^{\prime}(x) d x
$$

- Note $\frac{d u}{d x}=u^{\prime}(x) \Rightarrow d u=$ \qquad . Also $\frac{d v}{d x}=v^{\prime}(x) \Rightarrow d v=$ \qquad -
- Suppressing variable x, we get:

$$
\int u d v=\quad . \rightarrow \text { Integration by Parts }
$$

Example 1 Use integration by parts to find the following integrals.
(a) $\int x e^{3 x} d x$
(b) $\int x^{3} \ln x d x$

- Partial Fraction Decomposition

Example 2 Find $\int \frac{2}{x^{2}-3 x+2} d x$ by first writing $\frac{2}{x^{2}-3 x+2}=\frac{A}{x-1}+\frac{B}{x-2}$.

Example 3 Use any integration method to perform the following indefinite integrals:
(a) $\int x \sqrt{2 x+9} d x$
(c) $\int(\ln x)^{2} d x$
(b) $\int \frac{x}{x^{2}-x-6} d x$
(d) $\int \frac{6}{2 x^{2}+3 x+1} d x$

Example 4 In a study of students learning foreign language, the number of new words $w(t)$ (as a function of time) an average student can learn a day is modeled by the equation $\frac{d w}{d t}=0.1(1-t) e^{-0.1 t}$ If the student begins with 20 new words a day, how many new words a day can he learn after 10 days.

