\qquad

Math 10250 Activity 33: Area and the Definite Integral (Section 5.4)

Goal: To compute area of curved regions in the plane.

- First consider the region under the graph of a non-negative function $f(x)$ over its domain $[a, b]$:

Q: How do you compute the area of the region A ?
A: In five steps:
(1) Divide the interval $[a, b]$ into n equal subinterval.
(2) Choose a point in each subinterval.
(3) Compute the area of the rectangle corresponding to each piece.
(4) Estimate the area of A by adding the areas of all rectangles.
(5) Get the exact area by taking larger and larger n (smaller and
 smaller subintervals).
Let's look at each of the above steps in detail.
(1) Divide $[a, b]$ into n subintervals of equal width Δx and choose a point x_{i} in each subinterval.
(Usually this point is chosen to be either the left endpoint, the right endpoint, or the midpoint of the subinterval.)

(2) Construct a rectangle over each subinterval with height $f\left(x_{i}\right)$ and compute the area of each rectangle.
(Let's use left-hand endpoints of the segments)
Area of first rectangle $=$ height \cdot base $=$ \qquad .
Area of second rectangle $=$ height \cdot base $=$ \qquad .

Area of nth rectangle $=$ height \cdot base $=$ \qquad .
(3) Estimate the area of A by adding the areas in (2).
area of $A \approx \quad=S_{n}(f) \leftarrow$ Riemann Sum
(4) The approximation above gets more accurate as the rectangles get smaller.

(5) So we can get the exact area of A by letting \qquad . Therefore,

$$
\text { area of } A=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x\right]=\lim _{n \rightarrow \infty} S_{n}(f)
$$

Example 1 Estimate the area under the graph of $y=1 / x, 1 \leq x \leq 3$, by partitioning the interval $[1,3]$ into 4 equal segments and computing the Riemann sum

$$
S_{4}(f)=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x
$$

where the points x_{1}, x_{2}, x_{3}, and x_{4} are chosen to be:
(a) left-hand endpoint of the segments,

(b) midpoint of the segments.

- The definite integral: nonnegative case

The limit in Step (5) on the previous page is so special that we give it a name and symbol:

area under the graph of $f(x)$ for $a \leq x \leq b$ if $f(x)$ is nonnegative
If this limit exists, we call it the Definite Integral of $f(x)$ over the interval $a \leq x \leq b$.
Example 2 Find $\int_{0}^{1} 4 x d x$ using geometry.

