Math 10250 Activity 33: Area and the Definite Integral (Section 5.4)

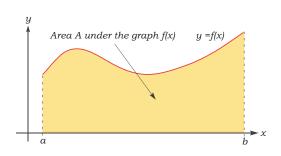
Goal: To compute area of curved regions in the plane.

• First consider the region under the graph of a non-negative function f(x) over its domain [a, b]:

Q: How do you compute the area of the region A?

A: In five steps:

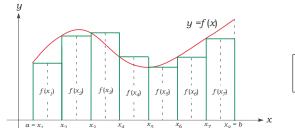
- (1) Divide the interval [a, b] into n equal subinterval.
- (2) Choose a point in each subinterval.
- (3) Compute the area of the rectangle corresponding to each piece.
- (4) Estimate the area of A by adding the areas of all rectangles.
- (5) Get the exact area by taking larger and larger n (smaller and smaller subintervals).



Let's look at each of the above steps in detail.

(1) Divide [a, b] into n subintervals of equal width Δx and choose a point x_i in each subinterval.

(Usually this point is chosen to be either the left endpoint, the right endpoint, or the midpoint of the subinterval.)



(2) Construct a rectangle over each subinterval with height $f(x_i)$ and compute the area of each rectangle. (Let's use left-hand endpoints of the segments)

Area of first rectangle = height \cdot base = .

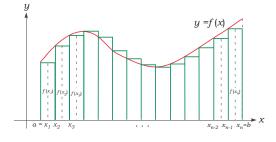
Area of second rectangle = height \cdot base = _____.

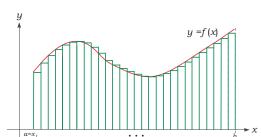
Area of nth rectangle = height \cdot base = ______

(3) Estimate the area of A by adding the areas in (2).

area of $A \approx$ = $S_n(f)$ \leftarrow Riemann Sum

(4) The approximation above gets more accurate as the rectangles get smaller.





(5) So we can get the exact area of A by letting _____. Therefore,

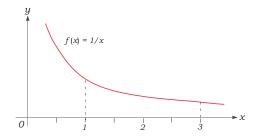
area of $A = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x] = \lim_{n \to \infty} S_n(f)$

Example 1 Estimate the area under the graph of y = 1/x, $1 \le x \le 3$, by partitioning the interval [1,3] into 4 equal segments and computing the Riemann sum

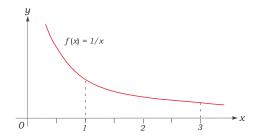
$$S_4(f) = f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + f(x_4)\Delta x,$$

where the points x_1, x_2, x_3 , and x_4 are chosen to be:

(a) left-hand endpoint of the segments,



(b) midpoint of the segments.



▶ The definite integral: nonnegative case

The limit in Step (5) on the previous page is so special that we give it a name and symbol:

$$= \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x] \leftarrow \textbf{Definition of the Definite Integral}$$

\$\\$\\$

area under the graph of f(x) for $a \le x \le b$ if f(x) is nonnegative

If this limit exists, we call it the **Definite Integral of** f(x) **over the interval** $a \le x \le b$.

Example 2 Find
$$\int_0^1 4x \ dx$$
 using geometry.