Name _____

Date _

Math 10250 Activity 34: Area and the Definite Integral (Sections 5.4 & 5.5)

GOAL: To compute the definite integral of a function that takes both positive and negative values.

Q1: How do we define the integral of a function that can take both positive and negative values?

A1: In four steps:

(1) Divide the interval [a, b] into n subintervals.

(2) Choose a point in each subinterval.

(3) Compute the corresponding Riemann sum.

$$S_n(f) =$$
 \leftarrow Riemann Sum

 \mathbf{u}

y = f(x)

0.25 0.5 0.75

.25 1.5

1.75 2 X

(4) By letting n go to infinity obtain:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x] .$$
 \leftarrow Definite Integral

Example 1 For the function f(x) whose graph is displayed in the Figure below, estimate $\int_0^2 f(x) dx$ by using the Riemann sum corresponding to $\Delta x = 0.5$ and the midpoints.

Example 2 Estimate the integral $\int_{-1}^{1} x^3 e^{-x^2} dx$ using 4 strips with left-hand endpoints.

• The relation between integral and area is:

 $\int_{a}^{b} f(x) \, dx = (\text{area of region lying } \underline{\qquad} \text{the } x\text{-axis}) - (\text{area of region lying } \underline{\qquad} \text{the } x\text{-axis}).$

Example 3 The graph of f(x) for $-1 \le x \le 5$, is shown in the figure below. The size of each enclosed area are as indicated.

Q2: What are the basic properties of definite integral? A2:

▶ The Fundamental Theorem of Calculus (Section 5.5)

Q1: What is the connection between
$$\int_{a}^{b} f(x) dx$$
 and $\int f(x) dx$?
 \uparrow \uparrow \uparrow
definite integral indefinite integral

A2:

Fundamental Theorem of Calculus

IF (1) f(x) is continuous on [a, b]; (2) F(x) is an antiderivative of f(x) i.e F'(x) = f(x)THEN $\int_{a}^{b} f(x)dx =$ ______ i.e. $\int_{a}^{b} F'(x)dx =$ ______

Example 4 Compute the following definite integrals:

(a)
$$\int_{1}^{2} (x^2 + 3) dx$$

(b)
$$\int_{-2}^{-1} (e^{2x} + \frac{2}{x}) dx$$

Example 5 Sketch the graph of $f(x) = 2e^x$ from a = -1 to b = 2 and use the fundamental theorem of calculus to find the area under the graph.

$$\int_{-1}^{2} 2e^x \, dx =$$

▶ Physical interpretations of the Fundamental Theorem of Calculus

** Total change of a certain quantity is expressed as the definite integral of its rate of change.**

• From velocity v to displacement s:

Displacement between times
$$a$$
 and $b = s(b) - s(a) = \int_{a}^{b} \underline{\qquad} dt$.

Example 6 An object is falling vertically downward, and its velocity (in feet per second) is given by v = -32t - 20. Write a definite integral that gives the change in height in the first 3 seconds.

Similary, the following are true.

• From acceleration *a* to velocity *v*:

Change in velocity between times a and $b = v(b) - v(a) = \int_{a}^{b} \underline{\qquad} dt$.

• From rate of growth r(t) to total growth g(t):

Total growth between times a and $b = g(b) - g(a) = \int_{a}^{b} \underline{\qquad} dt$.