\qquad
\qquad

Math 10250 Activity 34: Area and the Definite Integral (Sections 5.4 \& 5.5)

GOAL: To compute the definite integral of a function that takes both positive and negative values.
Q1: How do we define the integral of a function that can take both positive and negative values?
A1: In four steps:
(1) Divide the interval $[a, b]$ into n subintervals.
(2) Choose a point in each subinterval.
(3) Compute the corresponding Riemann sum.
$S_{n}(f)=\quad \leftarrow$ Riemann Sum

(4) By letting n go to infinity obtain:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x\right] . \leftarrow \text { Definite Integral }
$$

Example 1 For the function $f(x)$ whose graph is displayed in the Figure below, estimate $\int_{0}^{2} f(x) d x$ by using the Riemann sum corresponding to $\Delta x=0.5$ and the midpoints.

Example 2 Estimate the integral $\int_{-1}^{1} x^{3} e^{-x^{2}} d x$ using 4 strips with left-hand endpoints.

- The relation between integral and area is:

$$
\left.\int_{a}^{b} f(x) d x=\text { (area of region lying ___ the } x \text {-axis }\right) \text { (area of region lying ___ the } x \text {-axis). }
$$

Example 3 The graph of $f(x)$ for $-1 \leq x \leq 5$, is shown in the figure below. The size of each enclosed area are as indicated.

 (a) Find the area of the region enclosed by the graph of $f(x),-1 \leq x \leq 5$, and the x-axis.
(b) $\int_{-1}^{5} f(x) d x \stackrel{?}{=}$

Q2: What are the basic properties of definite integral?
A2:

- The Fundamental Theorem of Calculus (Section 5.5)

Q1: What is the connection between $\int_{a}^{b} f(x) d x$ and $\int f(x) d x$?
definite integral indefinite integral
A2:

Fundamental Theorem of Calculus

IF (1) $f(x)$ is continuous on $[a, b] ; \quad$ (2) $F(x)$ is an antiderivative of $f(x)$ i.e $F^{\prime}(x)=f(x)$
THEN $\int_{a}^{b} f(x) d x=\square$ i.e. $\int_{a}^{b} F^{\prime}(x) d x=$ \qquad

Example 4 Compute the following definite integrals:
(a) $\int_{1}^{2}\left(x^{2}+3\right) d x$
(b) $\int_{-2}^{-1}\left(e^{2 x}+\frac{2}{x}\right) d x$

Example 5 Sketch the graph of $f(x)=2 e^{x}$ from $a=-1$ to $b=2$ and use the fundamental theorem of calculus to find the area under the graph.

$$
\int_{-1}^{2} 2 e^{x} d x=
$$

- Physical interpretations of the Fundamental Theorem of Calculus

** Total change of a certain quantity is expressed as the definite integral of its rate of change.**

- From velocity v to displacement s :

$$
\begin{array}{|c}
\text { Displacement between times } a \text { and } b=s(b)-s(a)=\int_{a}^{b} \\
\text { change of position between times } a \text { and } b
\end{array} d t
$$

Example 6 An object is falling vertically downward, and its velocity (in feet per second) is given by $v=$ $-32 t-20$. Write a definite integral that gives the change in height in the first 3 seconds.

Similary, the following are true.

- From acceleration a to velocity v :

$$
\text { Change in velocity between times } a \text { and } b=v(b)-v(a)=\int_{a}^{b}
$$

- From rate of growth $r(t)$ to total growth $g(t)$:

$$
\text { Total growth between times } a \text { and } b=g(b)-g(a)=\int_{a}^{b}
$$

