Name \qquad Date \qquad
Math 10250 Activity 35: More on Definite Integrals (Section 5.5 Continue \& 5.6)
Goal: Introduce area function. Applying method of substitution and integration by parts with Fundamental Theorem of Calculus.

- From marginal function to total function

- The additional profit resulting in increasing production from a units to b units is given by
Total change in profit $\stackrel{?}{=} \quad \stackrel{?}{=} \quad \int_{a}^{b} M P(x) d x$.
- The extra revenue resulting from increasing production from a units to b units is given by
Total change in revenue $\stackrel{?}{=} \quad \stackrel{?}{=}$

Example 1 Suppose the marginal cost involved in producing x units of a certain product is given by the function

$$
M C(x)=2 x+1000 \text { when } x \geq 50
$$

Determine the increase in cost if production is increased from 50 to 80 .

- The area as an antiderivative

Let $\mathrm{A}(t)=\int_{a}^{t} f(x) d x$ for $a \leq t \leq b$.
If $F(t)$ is an antiderivative of $f(t)$, what is the relation between $A(t)$ and $F(t)$?
(Hint: Fundamental Theorem of Calculus)

Conclusion: $A(t)$ is also an antiderivative of $f(t)$. i.e.,

Theorem 5.5.2

IF $f(x)$ is continuous on $[a, b]$ THEN $\quad \frac{d}{d t} \int_{a}^{t} f(x) d x \stackrel{?}{=}$

Example 2 $\frac{d}{d t} \int_{1}^{t}(1+\ln x)^{2} d x \stackrel{?}{=}$.

- Substitution in definite integrals

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x^{u=\underline{\underline{g}}(x)}
$$

Example 3
(a) $\int_{4}^{5} x \sqrt{x^{2}-16} d x \stackrel{?}{=}$
(b) $\int_{0}^{1} x e^{x^{2}} d x \stackrel{?}{=}$

- Integration by parts in definite integrals

$$
\int_{a}^{b} u d v=
$$

Example 4
(a) $\int_{0}^{1} t e^{t / 2} d t$?
(b) $\int_{1}^{2} x \ln (x) d x \stackrel{?}{=}$

