Name _

Math 10250 Activity 35: More on Definite Integrals (Section 5.5 Continue & 5.6)

Goal: Introduce area function. Applying method of substitution and integration by parts with Fundamental Theorem of Calculus.

▶ From marginal function to total function

• The additional profit resulting in increasing production from a units to b units is given by

Total change in profit $\stackrel{?}{=}$ $\stackrel{?}{=}$ $= \int_{a}^{b} MP(x) dx.$

• The extra revenue resulting from increasing production from a units to b units is given by

Total change in revenue
$$\stackrel{?}{=}$$
 $\stackrel{?}{=}$ $\stackrel{?}{=}$.

Example 1 Suppose the marginal cost involved in producing x units of a certain product is given by the function

$$MC(x) = 2x + 1000$$
 when $x \ge 50$.

Determine the increase in cost if production is increased from 50 to 80.

▶ The area as an antiderivative

Let $A(t) = \int_{a}^{t} f(x) dx$ for $a \leq t \leq b$. If F(t) is an antiderivative of f(t), what is the relation between A(t) and F(t)? (Hint: Fundamental Theorem of Calculus)

<u>Conclusion</u>: A(t) is also an antiderivative of f(t). i.e.,

Theorem 5.5.2 IF f(x) is continuous on [a, b] THEN

$$\frac{d}{dt}\int_{a}^{t}f(x)dx\stackrel{?}{=}$$

Example 2 $\frac{d}{dt} \int_{1}^{t} (1+\ln x)^2 dx \stackrel{?}{=}.$

▶ Substitution in definite integrals

$$\int_{a}^{b} f(g(x))g'(x) \ dx \stackrel{u=g(x)}{=}$$

Example 3 (a) $\int_4^5 x\sqrt{x^2 - 16} \ dx \stackrel{?}{=}$

(b)
$$\int_0^1 x e^{x^2} dx \stackrel{?}{=}$$

▶ Integration by parts in definite integrals

(b)
$$\int_{1}^{2} x \ln(x) dx \stackrel{?}{=}$$