Name _____

Date

Math 10250 Activity 36: More on Areas and Estimating Definite Integrals (Section 5.6 continue & 5.7)

GOAL: To compute definite integrals and areas between the graphs of two functions. Introduce more numerical methods for integration.

▶ The area between two curves

Consider the following region:

Area between
$$f$$
 and $g = \int_{a}^{b}$, if $f(x) \le g(x)$.

Now consider:

Area between
$$f$$
 and g
= $\int_{a}^{c} [g(x) - f(x)] dx + \int_{c}^{b} [f(x) - g(x)] dx$.

Example 1 Find the intersection points of $f(x) = 1 - x^2$ and g(x) = x + 1. Then find the area between the graphs over the interval $-1 \le x \le 1$.

► Average values of continuous quantities

Example 2 Find the average value of $f(x) = x^5$ over the interval [-1, 2].

Example 3 Estimate $\int_0^1 e^{\sqrt{x}} dx$ (a) using the mid-point with n = 4

(b) using trapezoidal rule with n = 4.

▶ The trapezoidal rule: To estimate $\int_a^b f(x) dx$, we can use trapeziods instead of rectangles. Recall that the area of a trapezoid = $\frac{1}{2}$ (sum of the two parallel sides)·(height). Apply this method for the function below.

