\qquad
\qquad

Math 10250 Activity 36: More on Areas and Estimating Definite Integrals (Section 5.6 continue \& 5.7)

GOAL: To compute definite integrals and areas between the graphs of two functions. Introduce more numerical methods for integration.

- The area between two curves

Consider the following region:

$$
\text { Area between } f \text { and } g=\int_{a}^{b} \quad, \quad \text { if } f(x) \leq g(x)
$$

Now consider:

Area between f and g

$$
=\int_{a}^{c}[g(x)-f(x)] d x+\int_{c}^{b}[f(x)-g(x)] d x .
$$

Example 1 Find the intersection points of $f(x)=1-x^{2}$ and $g(x)=x+1$. Then find the area between the graphs over the interval $-1 \leq x \leq 1$.

- Average values of continuous quantities

Q1: What is the average value of 3,5 and 7 ?
Answer:

Q2: What is the average value of $f(x)$ on $[a, b]$?
A2: Average value of f over $[a, b]=\frac{\int_{a}^{b}}{}$

Example 2 Find the average value of $f(x)=x^{5}$ over the interval [-1, 2].

Example 3 Estimate $\int_{0}^{1} e^{\sqrt{x}} d x$
(a) using the mid-point with $n=4$
(b) using trapezoidal rule with $n=4$.

- The trapezoidal rule: To estimate $\int_{a}^{b} f(x) d x$, we can use trapeziods instead of rectangles. Recall that the area of a trapezoid $=\frac{1}{2}$ (sum of the two parallel sides).(height). Apply this method for the function below.

$$
\int_{a}^{b} f(x) d x \approx\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \cdot \frac{\Delta x}{2} \leftarrow \text { trapezoidal rule }
$$

