\qquad Date

Math 10250 Review for Exam 1

1. (a) Determine the natural domain of $f(x)=\frac{2-x}{x-1}$, find also its inverse $g(x)$.

Ans. $x \neq 1 ; g(x)=\frac{2-x}{x+1}$
(b) What is the natural domain of $f(x)=\sqrt{3-2 x}$?

Ans. $x \leq 3 / 2$
2. A brand of sunglasses selling for $\$ 50$ each has a demand of 1,500 units. However, when the price is increased by $\$ 5$, its demand is decreased by 100 units. Find its demand assuming that is a linear function.
3. Complete the square for each quadratic and then sketch its graph.
(i) $f(x)=-3 x^{2}+12 x$
(ii) $f(x)=2 x^{2}-12 x+10$.

Ans. (i) $f(x)=-3(x-2)^{2}+12$; (ii) $f(x)=2(x-3)^{2}-8$
4. When the price p of a particular computer is $\$ 2,000$ then the demand x is 50,000 units per week. However, when the price drops by $\$ 500$ then the demand rises by 25,000 units. On the cost side, the company making these computers has $\$ 40,000,000$ fixed cost and $\$ 600$ expenses per unit. Assuming that the demand is linear, find the profit function P in terms of x and its maximum value.
5. (a) $\lim _{h \rightarrow 0} \frac{5(1+h)^{2}-5}{h} \stackrel{?}{=}$
(b) $\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h} \stackrel{?}{=}$

Ans. (a) $10 ;$ (b) $-\frac{1}{4}$
6. The graph of the function $f(x)$ is given in the next Figure. Which of the following statements is NOT true?
(a) $\lim _{x \rightarrow 2} f(x)=4$
(b) $\lim _{x \rightarrow 4^{-}} f(x)=2$ and $\lim _{x \rightarrow 4^{+}} f(x)=0$
(c) $f(x)$ has limit at $x=4$.
(d) $f(x)$ is continuous except at the points $x=2,4$.
(e) $\lim _{x \rightarrow 0} f(x)=1$.

7. If $x \neq 2$ then $f(x)=\frac{x^{2}+2 x-8}{x-2}$. Define $f(2)$ so that $f(x)$ is a continuous function. Ans. c Ans. $f(2)=6$
8. In which of the following intervals you can be sure that the function $f(x)=x^{4}+2 x^{3}-3 x^{2}-2 x+3$ takes the value 2 ? (i.e the equation $f(x)=2$ has a solution.) $[-3,-2],[-2,-1],[-1,0],[0,1],[1,2],[2,3]$

Ans. $[-3,-2],[-1.0],[0,1],[1,2]$
9. For each function below, find vertical asymptote(s), horizontal asymptote(s), y-intercept, its zero(s), and then sketch its graph. Ans. (a) v.a: $x= \pm 1$; h.a: $y=1$; zeros: $x= \pm 4$, y-intercept: 16 ; (b) v.a: $x=-1$; h.a: $y=0$; zeroes: None, y-intercept: None
(a) $f(x)=\frac{x^{2}-16}{x^{2}-1}$
(b) $f(x)=\frac{x-4}{x^{2}-3 x-4}$
10. Suppose that you put $\$ 100$ in an account paying 2% annual interest, compounded daily. How much will you have at the end of 1 day? 2 days? and 3 days?

$$
\text { Ans. } 100\left(1+\frac{0.02}{365}\right) ; 100\left(1+\frac{0.02}{365}\right)^{2} ; 100\left(1+\frac{0.02}{365}\right)^{3}
$$

11. Suppose that you have an account paying interest, compounded weekly, has balance given by $B(t)=$ $8000(1.0004)^{52 t}$. What is its principal and annual interest rate?
12. $\$ 4,000$ is deposited into an account paying $q \%$ interest, compounded annually. If the account doubles after 10 years, what is q ?

Ans. $q=7.18$
13. A population of bacteria on a growing medium is initially 10 million. Three hours later the number of bacteria is numbered at 15 million. Write down a formula for the population $P(t)$ at time t in hours if the population is growing exponentially.

Ans. $P(t)=10(1.145)^{t}$
14. Match the following functions with the given graphs without using your calculator:

$$
\begin{array}{lll}
f_{1}(x)=-x^{1 / 3} & f_{2}(x)=x^{2 / 3} & f_{3}(x)=x^{4}-x-5 \\
f_{4}(x)=\frac{5 x^{4}-25}{x^{2}+5} & f_{5}(x)=\frac{5 x^{3}-25}{x^{2}+5} & f_{6}(x)=\frac{5 x^{2}-25}{x^{2}+5}
\end{array}
$$

15. Match the graphs to the given quadratic functions. Some graphs are redundant.

$$
\begin{array}{ll}
f_{1}(x)=(x-5)^{2}+2 & f_{2}(x)=a(x-3)^{2}+1 \quad(a<0) \\
f_{3}(x)=b(x+3)^{2}-1 \quad(b>0) & f_{4}(x)=(x+5)^{2}+2
\end{array}
$$

16. A private health club has determined that the number of members depends on the price of a membership, and they are related by an equation of the form $q=3000-20 p$, where q is the number of members and p is the annual price of a membership. The club has a fixed costs of $\$ 20,000$ per year plus an average annual cost of $\$ 40$ per member.
(a) Write the club's revenue R as a function of the price p.

Ans. $R=3000 p-2 p^{2}$
(b) Write the club's profit P as a function of the price p.

Ans. $P=-20 p^{2}+3800 p-140000$
(c) What membership price should the club set to maximize its profit?

Ans. $\$ 95$
(d) Find the break-even point. Interpret your answer.

Ans. $\$ 50$ and $\$ 140$
17. Find the equilibrium price p_{e} and equilibrium quantity q_{e} for each pair of demand and supply functions. Make a sketch of the graphs marking the coordinates of intersection point.
(a) $D(q)=0.005(q-100)^{2}$ and $S(q)=0.1 q+2$ for $0 \leq q \leq 100$

Ans. $p_{e}=8, q_{e}=60$
(b) $D(p)=\frac{8}{p+1}$ and $S(p)=\frac{1}{3} p+1$

