Math 10250 Review for Exam 1

- 1. (a) Determine the natural domain of $f(x) = \frac{2-x}{x-1}$, find also its inverse g(x). Ans. $x \neq 1$; $g(x) = \frac{2-x}{x+1}$
 - (b) What is the natural domain of $f(x) = \sqrt{3-2x}$?

- 2. A brand of sunglasses selling for \$50 each has a demand of 1,500 units. However, when the price is increased by \$5, its demand is decreased by 100 units. Find its demand assuming that is a linear function. Ans. $q = D(p) = -20p + 2{,}500$
- 3. Complete the square for each quadratic and then sketch its graph.

Ans. (i)
$$f(x) = -3(x-2)^2 + 12$$
; (ii) $f(x) = 2(x-3)^2 - 8$

4. When the price p of a particular computer is \$2,000 then the demand x is 50,000 units per week. However, when the price drops by \$500 then the demand rises by 25,000 units. On the cost side, the company making these computers has \$40,000,000 fixed cost and \$600 expenses per unit. Assuming that the demand is linear, find the profit function P in terms of x and its maximum value.

5. (a)
$$\lim_{h\to 0} \frac{5(1+h)^2-5}{h} \stackrel{?}{=}$$

(b)
$$\lim_{h\to 0} \frac{\frac{1}{2+h} - \frac{1}{2}}{h} \stackrel{?}{=}$$

Ans. (a) 10; (b) $-\frac{1}{4}$

6. The graph of the function f(x) is given in the next Figure. Which of the following statements is **NOT** true?

(b)
$$\lim_{x \to 4^{-}}^{x \to 2} f(x) = 2$$
 and $\lim_{x \to 4^{+}}^{x \to 4^{+}} f(x) = 0$
(c) $f(x)$ has limit at $x = 4$.

- (d) f(x) is continuous except at the points x = 2, 4.
- (e) $\lim_{x \to 0} f(x) = 1$.

Ans. c

7. If $x \neq 2$ then $f(x) = \frac{x^2 + 2x - 8}{x + 2}$. Define f(2) so that f(x) is a continuous function.

Ans. f(2) = 6

8. In which of the following intervals you can be sure that the function $f(x) = x^4 + 2x^3 - 3x^2 - 2x + 3$ takes the value 2? (i.e the equation f(x) = 2 has a solution.) [-3, -2], [-2, -1], [-1, 0], [0, 1], [1, 2], [2, 3]

Ans.
$$[-3, -2], [-1.0], [0, 1], [1, 2]$$

9. For each function below, find vertical asymptote(s), horizontal asymptote(s), y-intercept, its zero(s), and then sketch its graph. Ans. (a) v.a: $x = \pm 1$; h.a: y = 1; zeros: $x = \pm 4$, y-intercept: 16; (b) v.a: x = -1; h.a: y = 0; zeroes: None, y-intercept: None

(a)
$$f(x) = \frac{x^2 - 16}{x^2 - 1}$$

(b)
$$f(x) = \frac{x-4}{x^2 - 3x - 4}$$

10. Suppose that you put \$100 in an account paying 2% annual interest, compounded daily. How much will Ans. $100\left(1+\frac{0.02}{365}\right)$; $100\left(1+\frac{0.02}{365}\right)^2$; $100\left(1+\frac{0.02}{365}\right)^3$ you have at the end of 1 day? 2 days? and 3 days?

- 11. Suppose that you have an account paying interest, compounded weekly, has balance given by $B(t) = 8000(1.0004)^{52t}$. What is its principal and annual interest rate?

 Ans. P = 8000; r = 2.08%
- 12. \$4,000 is deposited into an account paying q% interest, compounded **annually**. If the account doubles after 10 years, what is q?
- 13. A population of bacteria on a growing medium is initially 10 million. Three hours later the number of bacteria is numbered at 15 million. Write down a formula for the population P(t) at time t in hours if the population is growing exponentially.

 Ans. $P(t) = 10(1.145)^t$
- 14. Match the following functions with the given graphs without using your calculator:

$$f_1(x) = -x^{1/3}$$

$$f_2(x) = x^{2/3}$$

$$f_3(x) = x^4 - x - 5$$

$$f_4(x) = \frac{5x^4 - 25}{x^2 + 5}$$

$$f_5(x) = \frac{5x^3 - 25}{x^2 + 5}$$

$$f_6(x) = \frac{5x^2 - 25}{x^2 + 5}$$

15. Match the graphs to the given quadratic functions. Some graphs are redundant.

$$f_1(x) = (x-5)^2 + 2$$

$$f_2(x) = a(x-3)^2 + 1 \quad (a < 0)$$

$$f_3(x) = b(x+3)^2 - 1 \quad (b > 0)$$

$$f_4(x) = (x+5)^2 + 2$$

- 16. A private health club has determined that the number of members depends on the price of a membership, and they are related by an equation of the form q = 3000 20p, where q is the number of members and p is the annual price of a membership. The club has a fixed costs of \$20,000 per year plus an average annual cost of \$40 per member.
 - (a) Write the club's revenue R as a function of the price p.

Ans. $R = 3000p - 2p^2$

(b) Write the club's profit P as a function of the price p.

Ans. $P = -20p^2 + 3800p - 140000$

(c) What membership price should the club set to maximize its profit?

Ans. \$95

(d) Find the break-even point. Interpret your answer.

Ans. \$50 and \$140

17. Find the equilibrium price p_e and equilibrium quantity q_e for each pair of demand and supply functions. Make a sketch of the graphs marking the coordinates of intersection point.

(a)
$$D(q) = 0.005(q - 100)^2$$
 and $S(q) = 0.1q + 2$ for $0 \le q \le 100$

Ans. $p_e=8,\,q_e=60$

(b)
$$D(p) = \frac{8}{p+1}$$
 and $S(p) = \frac{1}{3}p+1$

Ans. $p_e = 3$, $q_e = 2$