Name

Date

Math 10250 Review for Exam 2

1. Use the definition of the derivative to find the derivative of each of the following functions.

(a)
$$f(x) = -3x^2 + 4$$
 (b) $f(x) = \sqrt{x} + 5$ (c) $f(x) = \frac{1}{3x + 8}$ (d) $f(x) = \frac{x}{5x + 2}$

2. Evaluate exactly (a) $\lim_{h \to 0} \frac{(7+h)^{10} - 7^{10}}{h}$ and (b) $\lim_{h \to 0} \frac{10^{7+h} - 10^7}{h}$

(Hint: Think derivative!)

- 3. The demand curve of a certain product is shown in Figure 1. The price p is measured in dollars and the quantity q in millions of units.
 - (a) Find the marginal revenue MR at q = 20. (Ans: -20)
 - (b) Use linear approximation to estimate R(20.1). (Ans: 198)

Figure 1

- 4. A ball is thrown into the air and its height in feet (measured from the ground) after t seconds is given by $s = -16t^2 + 32t + 48$ until it hits the ground.
 - (a) What is the initial height of the ball?
 - (b) What is its velocity at the end of 1, and 1.5 seconds? In what direction (up or down) is it moving at the end of 1 and 1.5 second? (Ans: v(t) = -32t + 32)
 - (c) At what time does the ball hit the ground?
 - (d) What is the ball's acceleration at the end of 0.5 seconds? What is the ball's acceleration after 1 second? (Ans: -32 ft/s^2)

5.
$$(x^4 - e^{3x})''' \stackrel{?}{=}$$
 (Ans: $24x - 27e^{3x}$)

6. The demand for an item is p = 80 - 0.2x and its cost function is C(x) = 20x + 100, where x is the quantity of the item. Find the marginal revenue, cost and profit. If every item made is sold, should the company increase production to increase profit when x = 100? when x = 200? Explain.

(Ans:
$$R'(x) = 80 - 0.4x$$
, $C'(x) = 20$, $P'(x) = R'(x) - C'(x)$)

- 7. Let $f(x) = x^3 g(2/x)$. If g(1) = 3 and g'(1) = 10, then find f'(2).
- 8. The GDP of a country at the beginning of 2006 was \$500 billion dollars and it was growing at a rate of \$20 per year. Use tangent line approximation to estimate the GDP of this country at the end of the third quarter. (Hint: Let G(t) be the GDP. Then G(0) = 500 and G'(0) = 20. Thus $G(3/4) \approx ...$)

(Ans: 48 ft)

(Ans: 3 sec.)

⁽Ans: (a) $10(7)^9$; (b) $10^7 \ln 10$)

9. Given the graph of f(x), find each of the following derivatives below.

(a) If
$$p(x) = f(x) \cdot x^3$$
 then $p'(2) \stackrel{?}{=}$
(b) If $q(x) = \frac{f(x)}{f(x) + 1}$ then $q'(2) \stackrel{?}{=}$
(c) If $r(x) = \ln(f(x) + e)$ then $r'(2) \stackrel{?}{=}$
(d) $s(x) = e^{f(x)} + (f(x))^3$ then $s'(2) \stackrel{?}{=}$
Ans: (a) 20, (b) -1/8, (c) $\frac{-2}{3+e}$, (d) $-2e^3 - 54$

- 10. If \$3,000 is deposited in an in an account paying 6% annual interest, compounded **continuously**. How long it will take for the balance to reach \$6,000.
- 11. How much money must you invest in an account paying 3% annual interest compounded **continuously** in order to have a balance of \$20,000 in 10 years?

(Ans. $20000e^{-0.3}$)

12. Use the approximation $\log_2 3 \approx 1.585$ and $\log_2 5 \approx 2.322$ to approximate the following:

(a)
$$\log_2 30 \stackrel{!}{\approx}$$

(b) $\log_2 15 \stackrel{?}{\approx}$
(c) $\log_2(9/10) \stackrel{?}{\approx}$
Ans.-0.152

13. A chain of gourmet food stores sells a delicacy prepared from a rare fish species. Suppose that the amount of delicacy available at any time during the 16-week season is given by

$$w = 1000te^{-0.02t^2}, \qquad 0 \le t \le 16,$$

where w is the number of pounds and t is the time in weeks. Suppose the price per pound is p = 500 - 0.08w. How fast (in dollars per week) is the **revenue** from this delicacy changing at the end of 8 weeks? (Ans: -62, 506.99 dollars/week)

- 14. Suppose a rectangular tank, whose base is a square of length 5 feet, is filling with water at the rate of 0.5 cubic feet per minute. How fast is the water level rising? (Ans: 1/50 ft/min)
- 15. You have just brought your Starbucks coffee into your room, which is kept at the temperature of 70°F. Five minutes later the temperature of the coffee is 350°F and is decreasing at a rate of 7°F per minute. Write a differential equation modeling the temperature H(t) of your coffee. (a) Find H(5) and H'(5). (b) Is H'(5) positive or negative? What does this say? (c) Finally, find a formula for H(t).
- 16. The radioactive carbon in a piece of wood taken from an ancient cave decays at the rate of 6 disintegrations per minute (dpm), while the radioactive carbon in a similar sample of fresh wood decays at the rate of 8 dpm. Using 5,568 years as the half-life of radioactive carbon, estimate the age of the wood.
 (Ans: Age≈ 2310.93 years)
- 17. What are the different names of the derivative?