\qquad

Math 10250 Review for Exam 2

1. Use the definition of the derivative to find the derivative of each of the following functions.
(a) $f(x)=-3 x^{2}+4$
(b) $f(x)=\sqrt{x}+5$
(c) $f(x)=\frac{1}{3 x+8}$
(d) $f(x)=\frac{x}{5 x+2}$
2. Evaluate exactly (a) $\lim _{h \rightarrow 0} \frac{(7+h)^{10}-7^{10}}{h}$ and (b) $\lim _{h \rightarrow 0} \frac{10^{7+h}-10^{7}}{h}$ (Hint: Think derivative!)
3. The demand curve of a certain product is shown in Figure 1. The price p is measured in dollars and the quantity q in millions of units.
(a) Find the marginal revenue $M R$ at $q=20$.
(Ans: - 20)
(b) Use linear approximation to estimate $R(20.1)$.
(Ans: 198)

Figure 1
4. A ball is thrown into the air and its height in feet (measured from the ground) after t seconds is given by $s=-16 t^{2}+32 t+48$ until it hits the ground.
(a) What is the initial height of the ball?
(b) What is its velocity at the end of 1 , and 1.5 seconds? In what direction (up or down) is it moving at the end of 1 and 1.5 second?
(Ans: $v(t)=-32 t+32)$
(c) At what time does the ball hit the ground?
(Ans: 3 sec .)
(d) What is the ball's acceleration at the end of 0.5 seconds? What is the ball's acceleration after 1 second?
(Ans: $-32 \mathrm{ft} / \mathrm{s}^{2}$)
5. $\left(x^{4}-e^{3 x}\right)^{\prime \prime \prime} \stackrel{?}{=}$
(Ans: $24 x-27 e^{3 x}$)
6. The demand for an item is $p=80-0.2 x$ and its cost function is $C(x)=20 x+100$, where x is the quantity of the item. Find the marginal revenue, cost and profit. If every item made is sold, should the company increase production to increase profit when $x=100$? when $x=200$? Explain.

$$
\text { (Ans: } \left.R^{\prime}(x)=80-0.4 x, C^{\prime}(x)=20, P^{\prime}(x)=R^{\prime}(x)-C^{\prime}(x)\right)
$$

7. Let $f(x)=x^{3} g(2 / x)$. If $g(1)=3$ and $g^{\prime}(1)=10$, then find $f^{\prime}(2)$.
8. The GDP of a country at the beginning of 2006 was $\$ 500$ billion dollars and it was growing at a rate of $\$ 20$ per year. Use tangent line approximation to estimate the GDP of this country at the end of the third quarter.
9. Given the graph of $f(x)$, find each of the following derivatives below.
(a) If $p(x)=f(x) \cdot x^{3}$ then $p^{\prime}(2) \stackrel{?}{=}$
(b) If $q(x)=\frac{f(x)}{f(x)+1}$ then $q^{\prime}(2) \stackrel{?}{=}$

(c) If $r(x)=\ln (f(x)+e)$ then $r^{\prime}(2) \stackrel{?}{=}$
(d) $s(x)=e^{f(x)}+(f(x))^{3}$ then $s^{\prime}(2) \stackrel{?}{=}$

Ans: (a) 20, (b) $-1 / 8$, (c) $\frac{-2}{3+e}$, (d) $-2 e^{3}-54$
10. If $\$ 3,000$ is deposited in an in an account paying 6% annual interest, compounded continuously. How long it will take for the balance to reach $\$ 6,000$.

Ans. $t=\frac{\ln 2}{0.06}$
11. How much money must you invest in an account paying 3% annual interest compounded continuously in order to have a balance of $\$ 20,000$ in 10 years?
(Ans. $20000 e^{-0.3}$)
12. Use the approximation $\log _{2} 3 \approx 1.585$ and $\log _{2} 5 \approx 2.322$ to approximate the following:
(a) $\log _{2} 30 \stackrel{?}{\approx}$

Ans.4.907
(b) $\log _{2} 15 \stackrel{?}{\approx}$

Ans.3.907
(c) $\log _{2}(9 / 10) \stackrel{?}{\approx}$

Ans.-0.152
13. A chain of gourmet food stores sells a delicacy prepared from a rare fish species. Suppose that the amount of delicacy available at any time during the 16 -week season is given by

$$
w=1000 t e^{-0.02 t^{2}}, \quad 0 \leq t \leq 16
$$

where w is the number of pounds and t is the time in weeks. Suppose the price per pound is $p=500-0.08 w$. How fast (in dollars per week) is the revenue from this delicacy changing at the end of 8 weeks?
14. Suppose a rectangular tank, whose base is a square of length 5 feet, is filling with water at the rate of 0.5 cubic feet per minute. How fast is the water level rising?
(Ans: $1 / 50 \mathrm{ft} / \mathrm{min}$)
15. You have just brought your Starbucks coffee into your room, which is kept at the temperature of $70^{\circ} \mathrm{F}$. Five minutes later the temperature of the coffee is $350^{\circ} \mathrm{F}$ and is decreasing at a rate of $7^{\circ} \mathrm{F}$ per minute. Write a differential equation modeling the temperature $H(t)$ of your coffee. (a) Find $H(5)$ and $H^{\prime}(5)$. (b) Is $H^{\prime}(5)$ positive or negative? What does this say? (c) Finally, find a formula for $H(t)$.
(Ans: $\left.H(t)=70+280 e^{-0.025(t-5)}\right)$
16. The radioactive carbon in a piece of wood taken from an ancient cave decays at the rate of 6 disintegrations per minute (dpm), while the radioactive carbon in a similar sample of fresh wood decays at the rate of 8 dpm . Using 5,568 years as the half-life of radioactive carbon, estimate the age of the wood.
17. What are the different names of the derivative?

