Math 10250 Exam 1 Solutions - Fall 2008

1 At $t=0$ wind energy production was $w=16.8 \mathrm{MW}$ and was growing at the rate (slope) $5.2 \mathrm{MW} /$ year. Using the point-slope formula we obtain the equation $w-16.8=5.2(t-0)$, or $w=5.2 t+16.8$.
2 At $t=0$ wind energy production was $w=17 \mathrm{GW}$ while at $t=23$ it must reach the value $w=304 \mathrm{GW}$. Therefore it should increase at the rate of $(304-17) /(23-0)=287 / 23$.
3 In the distant future the population of the whales is given by $\lim _{t \rightarrow \infty} p(t)=20,500+\lim _{t \rightarrow \infty} \frac{10000}{t+2}=20,500$. Therefore, the whales will not disappear.
4 Since $\frac{\sqrt{4+h}-2}{h}=\frac{(\sqrt{4+h}-2)((\sqrt{4+h}+2)}{h(\sqrt{4+h}+2)}=\frac{h}{h(\sqrt{4+h}+2)}=\frac{1}{\sqrt{4+h}+2}$, the given limit is equal to $\lim _{h \rightarrow 0} \frac{1}{\sqrt{4+h}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{4}$.
$5 f(x)$ is even and thus its graph is symmetric with respect to the y-axis. However $f(x)$ is not odd, i.e., $f(-x) \neq-f(x)$. Thus $f(x)$ is not symmetric with respect to the origin. Since $2 x^{4}+1 \neq 0$ its natural domain is all real numbers. Also, $\lim _{x \rightarrow \infty} f(x)=10 / 2=5$.
6 The graph of $g(x)$ is obtained by translating the graph of $f(x)$ horizontally by 1 unit and vertically by 2 . Therefore $g(x)=f(x-1)+2$.
7 Since Sonja's weight is a continuous function her weight assumes the value 145 in the time intervals $[2,3]$ and [5,6] for certain, since only there it moves from above(below) 145 to below(above) 145.
8 The function $r(t)$ has no limit at $t=8$ and 16 since there the right-hand and the left-hand limits are different. Thus the function is not continuous at $t=8$ and 16 . Note that the left-hand limit is $r(t)$ at $t=16$ is 12 , not 6 .
9 A day later the balance of the account will be $1000+1000 \cdot \frac{0.05}{365}=1000\left(1+\frac{0.05}{365}\right)$. Two days later the balance will be $1000\left(1+\frac{0.05}{365}\right)^{2}$. And, t days later it will be $A(t)=1000\left(1+\frac{0.05}{356}\right)^{t}=1000\left(1+\frac{1}{7300}\right)^{t}$.
10 At $x=3$ the function $f(x)$ has left-hand limit equal to 2 and right-hand limit equal to 1 . Therefore $f(x)$ has no limit at $x=3$.
11 (i) We have

$$
\begin{aligned}
P(x) & =-\left[x^{2}-2 \cdot 10 \cdot x\right]-75 \\
& =-\left[x^{2}-2 \cdot 10 \cdot x+10^{2}-10^{2}\right]-75 \\
& =-\left[(x-10)^{2}-100\right]-75 \\
& =-(x-10)^{2}+100-75 \\
& =-(x-10)^{2}+25 .
\end{aligned}
$$

(Note that there are other ways to complete the square.)
(ii) Since $P(x)=-(x-10)^{2}+25$ we see that $P(x)$ takes its maximum value at $x=10$, which is 25 .
(iii) To find the break-even point we solve $P(x)=0$, or $-(x-10)^{2}+25=0$, or $(x-10)^{2}=25$, or $x-10= \pm 5$. This gives the break-even points $x=5$ and $x=15$.
12 (A) Writing $f(x)=\frac{(x-2)(x+2)}{(x-2)(x-5)} \stackrel{x \neq 2}{=} \frac{x+2}{x-5}$, we see that $x=5$ is a vertical asymptote since $\lim _{x \rightarrow 5 \pm} \frac{x+2}{x-5}=$ $\pm \infty$. Also, we have that $y=1$ is a horizontal asymptote, since $\lim _{x \rightarrow \pm \infty} \frac{x+2}{x-5}=1$.
(B) For $x \neq 3$ we have $\frac{x^{2}+2 x-15}{x-3}=\frac{(x-3)(x+5)}{x-3}=x+5$. Thus, $\lim _{x \rightarrow 3} f(x)=8$. Therefore for $f(x)$ to be continuous at $x=3$ we must have $f(3)=8$.
13 (A)(i) The revenue $R=q \cdot p=\frac{8000 q}{q+4}$.
(ii) $\lim _{q \rightarrow \infty} \frac{8000 q}{q+4}=8000$.
(B) To find the equilibrium price we solve $D(p)=S(p)$ which gives $-18 p+2,200=12 p-800$. Solving for p gives $30 p=3000$ or $p_{e}=100$. Then $q_{e}=12 \cdot 100-800=400$.
14 (A) Using the formula $A=P\left(1+\frac{r}{n}\right)^{n t}$, with $A=100,000, r=0.05, n=4$ and $t=10$ we have the equation $100,000=P\left(1+\frac{0.05}{4}\right)^{4 \cdot 10}$. Solving for P gives $P=100,000\left(1+\frac{0.05}{4}\right)^{-4 \cdot 10}$
(B) Using the formula $P=P_{0} b^{t}$ with $P_{0}=1000, P=9000$ and $t=2$ we get the equation $9000=1000 b^{2}$. Solving it we find $b^{2}=9$ or $b=3$. (Since $b>0$, the other root can be ignored.) Thus, we obtain the formula $P(t)=1000 \cdot 3^{t}$ for the size of this population at any future time t.

