Math 10250 Exam 2 Solutions - Fall 2008

1. Applying the product rule we obtain $f^{\prime}(x)=2 x \ln x+x=x(2 \ln x+1)$. Setting $f^{\prime}(x)=0$ gives $x(2 \ln x+1)=0$. Since x is in the domain of $\ln x$ we must have $x>0$. Thus, we get the equation $2 \ln x+1=0$, or $\ln x=-1 / 2$, or $x=e^{-1 / 2}$.
2. Note that $\lim _{h \rightarrow 0} \frac{99^{h}-1}{h}$ is the derivative of function $f(x)=99^{x}$ at $x=0$, hence the answer is $\ln (99)$.
3. Since $1 / 5=e^{-0.004951 t}$, by taking the natural logarithm, we get answer $t=\frac{\ln 5}{0.004951}$.
4. From the picture, $f(0)=4$ and $f^{\prime}(0)=-0.5$. By chain rule, $g^{\prime}(0)=2$. Therefore, using the product rule, we have $p^{\prime}(0)=f(0) g^{\prime}(0)+f^{\prime}(0) g(0)=7.5$.
5. $\log _{3}\left(\frac{9}{a^{2}}\right)=\log _{3}(9)-\log _{3}\left(a^{2}\right)=2-2 \log _{3}(a)=2-10=-8$.
6. Substituting for $T=78$ and $T_{a}=72$, we have $78=72+(82-72)(0.6)^{h}$. Solving this gives $h=1$.
7. $f^{\prime}(x)=\ln (x)+1$, so $f^{\prime \prime}(x)=1 / x$. Hence $f^{\prime \prime \prime}(x)=-1 / x^{2}$.
8. Note that $s^{\prime \prime}(t)=0.2$.
9. We have $7+\frac{1}{10}(2010-2000)=8$. Therefore the answer is 8 .
10. The rate of change between 1950 and 1970 is positive.
11. (a) After five years, it is $700 \cdot e^{0.045 \cdot 5}=876.63$.
(b) $876.63-600=276.63$.
12. The price in today's dollars is $850 \cdot e^{0.0315 \cdot 100}=19835.65$.
13. Forming the difference quotient (average rate of change) and simplifying gives

$$
\frac{p(x+h)-p(x)}{h}=\frac{\frac{x+h}{x+h+1}-\frac{x}{x+1}}{h}=\frac{(x+h)(x+1)-(x+h+1) x}{h(x+h+1)(x+1)}=\frac{1}{(x+h+1)(x+1)} .
$$

Then, letting h go to zero yields the derivative $p^{\prime}(x)=1 /(x+1)^{2}$.
14. Since $12=10 \cdot e^{0.05 \cdot t}$, we have $0.05 t=\ln (12 / 10)$. The answer is $20 \ln (1.2)=3.646$.
15. (a) Using chain rule, we have $f^{\prime}(x)=\frac{1}{x^{12}+2 e^{3 x}+3}\left(12 x^{11}+6 e^{3 x}\right)$.
(b) Using quotient rule, we have $\frac{d y}{d x}=\frac{\left(3 x^{2}+2\right)\left(x^{2}-2\right)-\left(x^{3}+2 x\right)(2 x)}{\left(x^{2}-2\right)^{2}}=\frac{x^{4}-8 x^{2}-4}{\left(x^{2}-2\right)^{2}}$.

