Math 1250 Final Exam Solutions - Fall 2008

1.) We need to find the equation of the line passing from the points $\left(t_{1}=0, E_{1}=20,000\right)$ and $\left(t_{2}=5, E_{2}=135,000\right)$. The slope of this line is $\frac{\Delta E}{\Delta t}=\frac{135,000-20,000}{5-0}=\frac{115,000}{5}=23,000$. Therefore busing the point-slope formula we get $E-20,000=23,000(t-0)$ or $E=23,000 t+20,000$.
2.) Since the maximum value of r is 7 and occurs when $t=1$, we conclude that $h=1$ and $k=7$. Thus $r(t)=a(t-1)^{2}+7$. Since $6.7=r(0)=a(0-1)^{2}+7=a+7$ we get $a=6.7-7=-0.3$. This $r(t)=-0.3(t-1)^{2}+7$. Letting $t=3$ gives $r(3)=-0.3(3-1)^{2}+7=-(0.3) 4+7$, or $r(3)=5.8$.
3.) Using the formula $F V=P V e^{r t}$, which in our situation takes the form $2,000=500 e^{0,05 t}$ and solving for t gives $4=e^{0.05 t}$ or $\ln 4=0.05 t$ or $t=\frac{\ln 4}{0.05}$.
4.) The first derivative of the "happiness" function is $H^{\prime}(x)=\frac{1}{2} x^{-1 / 2}$ which is positive for all $x>0$. Thus $H(x)$ is increasing. The second derivative of $H(x)$ is $H^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 4}$, which is negative for $x>0$. Thus the graph of $H(x)$ is concave down (not concave up as it is stated in one of the answers).
5.) This limit is the definition of the derivative of $f(x)=\ln x$ at $x=2$. Since $f^{\prime}(x)=1 / x$ we have that this limit is equal to $1 / 2=0.5$.
6.) The revenue is given by $R=x \cdot p=x(-0.02 x+18)=-0.02 x^{2}+18 x$. Therefore the profit function is $P(x)=R(x)-C(x)$ or $P(x)=-0.02 x^{2}+18 x-(2 x+1200)$ or $P(x)=-0.02 x^{2}+16 x-$ 1200. Taking the derivative gives $P^{\prime}(x)=-0.04+16$. Solving $P^{\prime}(x)=0$ or $-0.04 x+16=0$ gives $x=16 / 0.04$. Thus $x=400$ is the only critical point. Looking at the sign of $P^{\prime}(x)$ we see that it goes from + to - . Thus the maximum value of the profit is equal to $P(400)=-0.02(400)^{2}+$ $16(400)-1200=2,000$.
7.) Finding the sign of derivative we have:

- $f^{\prime}(x)>0$ for $x<1$ or $x>4$. Thus $f(x)$ is increasing in these intervals.
- $f^{\prime}(x)<0$ for $1<x<2$ or $2<x<4$. Thus $f(x)$ is decreasing in these intervals.
- $f^{\prime}(1)=f^{\prime}(2)=f^{\prime}(3)=0$. Thus $x=1,2,4$ are critical points.
- At $x=1$ there is a local maximum and at $x=4$ there is a local minimum, which means that (c) is false.
8.) Taking the integral of both sides of the equation $Q^{\prime}(x)=300 x^{-2 / 3}$ we find that $Q(x)=$ $\int 300 x^{-2 / 3} d x=900 x^{1 / 3}+c$. We can find c by pluging $Q=1000$ and $x=8$ into the above equation: $1000=1800+c$ or $c=-800$. Therefore $Q(x)=900 x^{1 / 3}-800$, and $Q(27)=900 \cdot 3-800=1900$.
9.) First we find derivative of $g(x)$. Reading the picture we have $g^{\prime}(3)=\frac{\Delta y}{\Delta x}=\frac{4-2}{1-3}=-1$. Now applying the chain rule we have $f^{\prime}(x)=\frac{1}{g(x)} \cdot g^{\prime}(x)$. Evaluating at $x=3$ gives $f^{\prime}(3)=g^{\prime}(3) / g(3)=$ $-1 / 2$.
10.) Differentiating both sides of the equation and using the chain rule gives $\frac{d V}{d t}=\frac{4 \pi}{3} 3 r^{2} \frac{d r}{d t}$. Next solving the equation $36 \pi=\frac{4 \pi}{3} r^{3}$, we find $r^{3}=27$ or $r=3$. Therefore when the volume is 36π then the radius is 3 . Since at this moment $\frac{d V}{d t}=72$ we have the equation $72=\frac{4 \pi}{3} 3 \cdot 3^{2} \frac{d r}{d t}$, which solved for $\frac{d r}{s t}$ gives $\frac{d r}{d t}=\frac{2}{\pi}$.
11.) We have $M^{\prime}(t)=21 e^{-0.1 t}>0$, which means mileage is an increasing function of time. Also, we have $M^{\prime \prime}(t)=-2.1 e^{-0.1 t}<0$, which means the graph of $M(t)$ is concave down (not concave up).
12.) Differentiating the utility function we see that $u^{\prime}(x)=\frac{1}{(x+1)}>0$, which means that $u(t)$ is
increasing. Since $u^{\prime \prime}(x)=\frac{-1}{(x+1)^{2}}<0$ we have that $u(x)$ is concave down (not up).
13.) Using the Riemann sum with $n=4$ and midpoints and reading the given figure gives $\int_{0}^{2} f(x) d x \approx[(-5)+(-3)+3+6](0.5)=0.5$.
14.) Since the graph is below the x-axis when $-1 \leq x \leq 0$, we have that the area between the graph and the x-axis for $-1 \leq x \leq 1$ is equal to $-\int_{-1}^{0} x^{9} d x+\int_{0}^{1} x^{9} d x=-\frac{1}{10}\left(0^{10}-(-1)^{10}\right)+-\frac{1}{10}\left(1^{10}-0^{10}\right)=$ $\frac{1}{10}+\frac{1}{10}=\frac{1}{5}$.
15.) Reading the picture of the supply curve we find that $S^{\prime}(3)=\frac{\Delta p}{\Delta x}=\frac{2-1}{3-1}=\frac{1}{2}$. Next, using the point-slope formula with $\left(x_{1}=3, p_{1}=2\right)$ and $m=\frac{1}{2}$ gives $p-2=\frac{1}{2}(x-3)$, or $p=2+\frac{1}{2}(x-3)$. Therefore $S(3.2) \approx 2+\frac{1}{2}(3.2-3)=2+0.1=2.1$.
16.) The revenue is given by $R=x \cdot p$ or $R=x \cdot D(x)$. Applying the product rule gives $R^{\prime}(x)=1 \cdot D(x)+x D^{\prime}(x)$, which evaluated at $x=2$ gives $R^{\prime}(2)=D(2)+2 \cdot D^{\prime}(2)$. From the given figure we obtain $D(2)=2$ and $D^{\prime}(2)=\frac{\Delta p}{\Delta x}=\frac{-1}{2}=-\frac{1}{2}$. Therefore $R^{\prime}(2)=2+2 \cdot\left(-\frac{1}{2}\right)=1$.
17.) We have $\int_{-1}^{1} f(x) d x+\int_{1}^{2} f(x) d x=\int_{-1}^{0} f(x) d x+\int_{0}^{2} f(x) d x=5-15=-10$.
18.) First we find A and B such that $\frac{1}{x(x-1)}=\frac{A}{x}+\frac{B}{x-1}$ or $1=A(x-1)+B x$. Setting $x=0$ gives $A=-1$. Next, setting $x=1$ gives $B=1$. Thus $\int \frac{1}{x(x-1)} d x=\int\left(\frac{1}{x-1}-\frac{1}{x}\right) d x=$ $\ln |x-1|-\ln |x|+c=\ln \left|\frac{x-1}{x}\right|+c$.
19.) If x is the side of the square base and y is the height of the box then its area is $A=x^{2}+4 x y$ and its volume is $V=x^{2} y$. Since $x^{2} y=32$ we get $y=\frac{32}{x^{2}}$. Thus the area can be expressed only as a function of x to obtain $A=x^{2}+4 x \cdot \frac{32}{x^{2}}$ or $A=x^{2}+\frac{128}{x}$. Taking the derivative gives $A^{\prime}=2 x-\frac{128}{x^{2}}$. Setting it equal to zero we obtain $2 x-\frac{128}{x^{2}}=0$ or $x^{3}=64$ or $x=4$. Since $A^{\prime \prime}=2+2 \cdot \frac{128}{x^{3}}>0$, we conclude that $x=4$ yields minimum area which is equal to $A(4)=4^{2}+\frac{128}{4}=48$.
20.) Constant deceleration means $\frac{d v}{d t}=a$, which gives $v=a t+c$. Since $3=v(0)=0+c$ we have $v(t)=a t+3$. Since the plane stops in half a minute we have $v(1 / 2)=a \cdot \frac{1}{2}+3=0$ or $a=-6$. Thus $v=-6 t+3$. In terms of the position $s(t)$ this equation reads $\frac{d s}{d t}=-6 t+3$. Integrating we obtain $s(t)=-3 t^{2}+3 t+c$. Since $0=s(0)=c$ we have $s(t)=-3 t^{2}+3 t$. Thus the distance traveled is equal to $s(1 / 2)=-3 / 4+3 / 2=3 / 4$.
21.) We have $P(200)-P(100)=\int_{50}^{100}(-0.2 x+30) d x=\left.\left(-0.1 x^{2}+30 x\right)\right|_{100} ^{200}=\left[-0.1(100)^{2}+30\right.$. $100]-\left[-0.1(50)^{2}+30 \cdot 50\right]=750$.
22.) Letting $d v=e^{-x} d x$ and $u=x$ we obtain $d u=d x$ and $v=-e^{-x}$. Now using integration by parts we have $\left.\int x e^{-x} d x=-x e^{-x}-\int\left(-e^{-x}\right)\right) d x=-x e^{-x}-e^{-x}+c=-(1+x) e^{-x}+c$.
23.) Letting $u=x^{4}$ gives $d u=4 x^{3} d x$. This means that we must choose $k=3$.
24.) Since $\sqrt{x} \geq x^{2}$ for $0 \leq x \leq 1$, the area is expressed by the integral

$$
\int_{0}^{1}\left(x^{1 / 2}-x^{2}\right) d x=\left.\left(\frac{x^{1 / 2+1}}{1 / 2+1}-\frac{x^{2+1}}{2+1}\right)\right|_{0} ^{1}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}
$$

25.) The average gas price is equal to $[2.18+3.20+2.80+3.00+3.90+3.60] \cdot \frac{1}{6}=\frac{18.78}{6} \approx 3.11$.

