Answers to Even-Numbered Exercises

Exercises 4.1

4. critical points: $-1,0,2$,
increasing on: $(-1,0)$ and $(2, \infty)$
decreasing on: $(-\infty,-1)$ and $(0,2)$
local min at: $x=-1, x=2$
local max at: $x=0$
5. critical point: 1
increasing on: $(1, \infty)$
decreasing on: $(-\infty, 1)$
local min: $\mathrm{x}=1$
local max: none
6. critical points: 0
increasing on: $(-2,0)$
decreasing on: $(0,2)$
local min: none
local max: $\mathrm{x}=0$
critical points:
increasing on:
decreasing on:
local min:
local max:
7. (a) there's a global max at $t=10$, and $s^{\prime}(10)=0$
(b) positive
(c) negative
(d) false
8. d, final answer
9. (a) $(-\infty, 0),(0,1)$, and $(2, \infty)$
(b) $(1,2)$
(c) $0,1,2$
(d) $x=1$
(e) $x=2$
10. There's a global max at $x=\frac{1}{2}$.

Exercises 4.2

4. (d)
5. (e)
6. (j)
7. concave down on $(-\infty,-2)$
concave up on $(-2, \infty)$
no inflection point
8. concave down on $(-\infty, 0)$
concave up on $(0, \infty)$
inflection point at $\mathrm{x}=0$
9. $x=e^{-1 / 2}$ is a critical point and local minimum, with $f\left(e^{-1 / 2}\right)=-\frac{1}{2 e}$.
10. $\mathrm{x}=0$ is a critical point and local minimum, with $\mathrm{f}(0)=0$.
11. (a) global maximum: $t=2$ (i.e. the 2 nd day)
(b) $r(t)$ is increasing, concave up on $(0,2)$, and concave down on $(2,4)$ inflection point: $t=2$
12. $\mathrm{x}=0$ is a critical point and local maximum. (Note: $\mathrm{f}^{\prime \prime}(0)=0$, so the second derivative test is inconclusive.)
$\mathrm{x}=2$ is a critical point and local minimum (using $\left.\mathrm{f}^{\prime \prime}(2)>0\right)$.
13. (a) global max: 1999
global min: 1940
(b) concave down: 1913 to 1940, and 1940 to 1970
concave up: 1970 to 1999
(c) inflection point: 1970

Exercises 4.3

All answers should be in form of graph. You can check them with a graphing calculators. For numbers 1, 4, and 7, there are different possible graphs.

Exercises 4.4

4. Maximum value of 5 at $x=1$. Minimum value of 2.75 at $x=-.5$.
5. Maximum value of 0.25 at $\mathrm{x}=2$. Minimum value of -0.25 at $\mathrm{x}=-2$.
6. Global maximum value of -1 at $x=0$. No global minimum.
7. $R(S)$ is increasing on $\left(0, \frac{1}{b}\right)$ and decreasing on $\left(\frac{1}{b}, \infty\right)$. Therefore, there's a global maximum at $S=\frac{1}{b}$.

Exercises 4.5

2. $\mathrm{p}=200$ will maximize revenue
3. $\mathrm{p}=\$ 19.50$ will maximize revenue
4. $A=x y+5 x+4 y+20$
$x y=180$
dimensions of the printed area are $x=12$ and $y=15$
(dimensions of the entire poster are 16 in by 20 in)
5. P should be located $\frac{\sqrt{2}}{2}$ miles away from A .
6. The house should be built 4.7 miles away from A.
