Math 10250 Exam 1 Solutions - Fall 2006

1. We have $\frac{\Delta q}{\Delta p}=\frac{5,000}{-50}=-100$. Therefore using the point-slope formula for the equation of the (demand) line having slope -100 and passing through $(200,25000)$ gives $q-25,000=-100(p-200)$, or $q=-100 p+45,000$.
2. Using the properties of the logarithms and the given, we have $\log _{3}\left(\frac{9}{a}\right)=\log _{3} 9-\log _{3} a=2-5=-3$.
3. The balance is $3,000\left(1+\frac{0.08}{4}\right)^{4 \cdot 3}=3,000(1.02)^{12}$.
4. We have $\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x-5}=\lim _{x \rightarrow 5} \frac{(x-5)(x+2)}{x-5}=\lim _{x \rightarrow 5}(x+2)=5+2=7$.
5. Since $\ln (x+3)$ is defined only when $x+3>0$ we must have $x>-3$.
6. Since $-2<1<3$ and $2>1>0$ by the intermediate value theorem for continuous functions we conclude that $f(x)=1$ has a solution in the intervals $[-1,0]$ and $[1,2]$.
7. If $y(t)$ is the amount of this substance at time t (in days) then $y(t)=80 e^{-k t}$. Since $40=y(5)=80 e^{-k \cdot 5}$ we have $\frac{1}{2}=e^{-5 k}$, or $-\ln 2=-5 k$, or $k=(\ln 2) / 5$.
8. Solving $y=\frac{2}{x+1}$ for x gives $x y+y=2$, or $x y=2-y$, or $x=\frac{2-y}{y}$. Switching the variables x and y gives the inverse function $g(x)=\frac{2-x}{x}$.
9. Since the vertex of the parabola is at $(2,-1)$ we have that $f(x)$ must be of the form $f(x)=a(x-2)^{2}-1$. Since $5=f(0)=a(0-2)^{2}-1=4 a-1$ we have $4 a=6$ or $a=3 / 2$. Therefore $f(x)=1.5(x-2)^{2}-1$.
10. $f(x)$ is not continuous at $x=5$ since $\lim _{x \rightarrow 5} f(x)=2$, which is not equal to $f(5)=-1$.
11. Since $5 x^{2}-5=5(x-1)(x+1)$ and $x^{2}-3 x+2=(x-1)(x-2)$ simplifying gives $f(x)=5(x+1) /(x-2)$. Thus $x=2$ (the zero denominator) is the only the vertical asymptote. Since $\lim _{x \rightarrow \pm \infty} \frac{5(x+1)}{x-2}=5$ we have that $y=5$ is the only horizontal asymptote.
12. Solving $4 x+2 y=6$ for y gives $2 y=-4 x+6$ or $y=-2 x+3$. Thus the given line has slope -2 . Using the point-slope formula gives $y-(-3)=-2(x-1)$ or $y+3=-2 x+2$ or $y=-2 x-1$.
13. (i) The cost function is: $C(x)=50 x+2,500,000$
(ii) The revenue function is: $R(x)=x \cdot p=x(-0.05 x+900)$
(iii) The profit function is: $P(x)=R(x)-C(x)=-0,05 x^{2}+850 x-2,500,000$.
14. We have: $f(x)=-3 x^{2}+24 x+2=-3\left(x^{2}-8 x\right)+2=-3\left(x^{2}-2 \cdot 4 \cdot x\right)+2=-3\left(x^{2}-2 \cdot 4 \cdot x+4^{2}-4^{2}\right)+2=$ $-3\left[(x-4)^{2} x-4^{2}\right]+2=-3(x-4)^{2}+50$.
15. (a) We have $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1}=\lim _{x \rightarrow 1}(x+1)=2$.
(b) The function $f(x)$ is not continuous at $x=1$ since $f(1)=3$, which is different from its limit there.
16. We have $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(6+h)}{h}=\lim _{h \rightarrow 0}(6+h)=6$.
17. The number of whales in the distant future will be $\lim _{t \rightarrow \infty}\left(300+\frac{800}{t+2}\right)=300+\lim _{t \rightarrow \infty} \frac{800}{t+2}=300+0=300$.
18. Let P be an amount. Then, we must have $P e^{r \cdot 10}=2 P$ or $e^{10 r}=2$ or $10 r=\ln 2$ or $r=0.1 \ln 2 \approx 0.07$.
19. Plan (A) at 65 , that is 35 years later, gives a balance of $100,000 e^{0.08 \cdot 35}=100,000 e^{2.8} \approx 1,644,460$, which is bigger than $1,500,000$. Thus (A) is the preferred plan.
20. The amount is equal to: $1,000\left(1+\frac{0.05}{365}\right)^{100} \approx 1013.79$.
