1. $R(q)=\frac{72 q}{q+2}, q \geq 0 ; R^{\prime}(q)=\frac{144}{(q+2)^{2}}>0, R^{\prime \prime}(q)=\frac{-288}{(q+3)^{3}}<0$; the answer is (c).
2. $P(q)=\frac{72 q}{q+2}-4 q, q \geq 0 ; P^{\prime}(q)=\frac{144}{(q+2)^{2}}-4$ and P is maximum at $q=4$ with $P(4)=32$; the answer is (a).
3. $s(0)$ is the minimum of the position function; the answer is (d).
4. $f^{\prime}(x)<0$ on $(-\infty,-1)$ and $f^{\prime}(x)>0$ on $(-1,+\infty)$; the answer is (b).
5. Since $f^{\prime \prime}(x)=\left(3 x^{2}+1\right) e^{x^{3}+x}>0$ the answer is (b).
6. $P(x)=-0.01 x^{2}+10 x-1000, P^{\prime}(x)=-0.002 x+10$ so P has a maximum value at $x=500$ with $P(500)=1500$; the answer is (d).
7. The function to be minimized is time (as a function of x); the answer is (a).
8. The intensity from point B is $I_{B}(x)=\frac{0.2}{10-x}$; the answer is (c).
9. $y(t)=2 e^{t / 2}+t^{2}+C$ and $5=y(0)=2+C$ so that $C=3$ and $y(2)=2 e+7$; the answer is (b).
10. $P(t)=\int 20 t e^{-t^{2}} d t=-10 e^{-t^{2}}+C$ and $4=P(1)=-\frac{10}{e}+C$ so that $C=4+\frac{10}{e}$ and $P(8)=$ $-10 e^{-64}+4+\frac{10}{e}$; the answer is (a).
11. (a) $f^{\prime}(x)=15 x^{4}-20 x^{3}$ and $f^{\prime \prime}(x)=60 x^{2}(x-1)$ so that $f^{\prime \prime}(0)=0$ hence the test is inconclusive and $f^{\prime \prime}(4 / 3)>0$ hence $x=4 / 3$ is a local minimum.
(b) Since $f^{\prime}(x)=2 x+e^{2 x}$ then $f(x)=\int\left(2 x+e^{2 x}\right) d x=x^{2}+\frac{1}{2} e^{2 x}+C$. To find the constant we observe that $0=f(0)=\frac{1}{2}+C$ so that $C=-\frac{1}{2}$ and hence $f(x)=x^{2}+\frac{1}{2} e^{2 x}-\frac{1}{2}$.
12. Let x denote the width and y the height of the page. Then $x y=200$ and the printed area is $A(x)=(x-4)\left(\frac{200}{x}-2\right)=\frac{2(x-4)(100-x)}{x}$ with $4 \leq x \leq 100$. Since $A^{\prime}(x)=\frac{200}{x}-2-(x-4) \frac{200}{x^{2}}=$ $\frac{-2(x-20)(x-20)(x+20)}{x^{2}}$
and $A(20)>0$ the desired dimensions are $x=20$ and $y=10$.
13. (a) $\int\left(e^{x}+e^{-x}\right) d x=e^{x}-e^{-x}+C$.
(b) If $u=x^{2}+1$ then $d u=2 x d x$ and $\int \frac{2 x}{x^{2}+1} d x=\int \frac{1}{u} d u=\ln \left(x^{2}+1\right)+C$.
14. We have $C(x)=10 x+\frac{6250}{x+1}+259$ where $x \geq 0$ and $C^{\prime}(x)=10-\frac{6250}{(x+1)^{2}}$ with $x=24$ the critical point. Since $C(0)=6509, C(24)=749$ and $\lim _{x \rightarrow \infty} C(x)=+\infty$ the answer is $x=24$.
15.

