1. Find all critical points of the function $f(x)=x^{3} e^{-2 x}$. Determine if each is a local maximum or local minimum and whether or not it is a global maximum or minimum

Ans: Global max at $x=1.5$. No global min
2. Find all critical points of the function $f(x)=3 x \ln x, x>0$. Where is the function increasing and where is it decreasing? Use the second derivative to describe the concavity of the function. Ans: Decreasing on $(0,1 / e)$, increasing on $(1 / e, \infty)$, concave up.
3. Find where the slope of the function $f(x)=x^{3}+3 x^{2}-9 x+17$ is (a) increasing and (b) decreasing. Also, sketch its graph.

Ans: (a) $(-1, \infty)$; concave up and (b) $(-\infty,-1)$; concave down
4. Sketch a graph of the function $f(x)=\frac{2 x}{x-3}$. List all vertical and horizontal asymptotes, and describe where the graph is increasing, decreasing, concave up, and concave down. Ans: Vertical asym. $x=3 ;$ Horizontal asym. at $y=2$ and the function is decreasing everywhere.
5. Sketch the graph of a function $f(x)$ defined for $x>0$ and such that: $\lim _{x \rightarrow 0^{+}} f(x)=\infty, \lim _{x \rightarrow \infty} f(x)=4$, and

6. Use implicit differentiation to find $\frac{d y}{d x}$ when $y^{4}-y e^{5 x}=14$.

$$
\text { Ans: } \frac{d y}{d x}=\frac{5 y e^{5 x}}{4 y^{3}-e^{5 x}}
$$

7. Find the equation of the tangent line to the curve $x^{2}-x y^{2}=e^{y}$ at the point $(1,0)$.
(Ans: $y=2(x-1)$)
8. The graph of the derivative of $f(x)$ is shown in Figure 1. (a) Find all critical points of $f(x)$, (b) Where is $f(x)$ increasing? decreasing? (c) Where is $f(x)$ concave up? concave down? (d) Give all inflection points. (a) $x=-1,4$ (b) increasing $(-1,4)$; decreasing $(-\infty,-1)$ and $(4, \infty)$ (c) concave up ($-\infty, 2$); concave down $(2, \infty)(\mathrm{d}) x=2$

Figure 1
9. If $f(x)$ satisfies the equation $f^{\prime}(x)=\ln x, x>0$, then find the concavity of its graph.

Ans: Concave up
10. Suppose the demand function for a certain product is given by the equation $q=10,125-150 p^{\frac{3}{2}}, 0 \leq p \leq 25$, where p is the price per unit and q is the number of items sold. What price maximizes revenue? Ans: $p=9$
11. Find the global maximum and minimum value, if any, of the function $f(x)=3 x^{4}-8 x^{3}+5$ on $[1, \infty)$ Ans: Global min $=-11$ occurring at $x=2$ and global max none.
12. A farmer wants to fence an area of 1.5 million square feet in a rectangular field and then divide it in half with a fence parallel to one of the sides of the rectangle. How can she do this so as to minimize the cost of the fence?
13. A circular cylindrical can, open at one end, has external surface area $27 \pi \mathrm{~cm}^{2}$. Find the maximum volume of such a can.
14. A box with a square base and a top is to be built with a volume of 20 cubic feet. The material for the base has density 3 lb per square foot, the material for the top has density 2 lb per square foot, and the material for the side has density 1 lb per square foot. What should the dimension of the box be so that its weight is minimum?
15. Find all functions whose derivative is equal to \sqrt{x}.
16. Find the function whose instantaneous rate of change at each t is $e^{0.2 t}$ and whose value at $t=0$ is 8 .
17. Find the function whose slope at each x is $8 x^{3}-\frac{1}{x}$ and whose graph passes through $(1,4)$.
18. The marginal profit function of a company producing and selling x pairs of wool socks per week is $M P(x)=-0.1 x+150$. If the profit from selling 1000 pairs of socks is $\$ 61,000$, what is the profit function? What is the profit from selling 1500 pairs of socks?

Ans: $P(x)=-0.05 x^{2}+150 x-39,000 ; \quad P(1500)=73,500$
19. The rate of production of a certain item, in millions of units per month, is given by $P^{\prime}(t)=8 t e^{-t^{2}}$. Find the production function $P(t)$ if $P(0)=5$.

Ans: $P(t)=-4 e^{-t^{2}}+9$
20. Find the indefinite integral using substitution. Check your answer by differentiating.
i) $\int x^{2} e^{x^{3}} d x$
ii) $\int \frac{4 x^{3}-2 x}{x^{4}-x^{2}-9} d x$
iii) $\int \frac{\ln \left(x^{4}+x^{2}+1\right)}{x^{4}+x^{2}+1}\left(4 x^{3}+2 x\right) d x$

$$
\begin{aligned}
& \text { iv) } \int\left(x^{3}+x-1\right)^{99}\left(3 x^{2}+1\right) d x \\
& \text { v) } \int \frac{e^{x}}{\left(10+e^{x}\right)^{4}} d x \\
& \text { vi) } \int \frac{2 x^{3}+x}{\left(x^{4}+x^{2}+1\right)^{3 / 2}} d x
\end{aligned}
$$

21. A Mustang GT is traveling along a straight road at 150 feet per second when the driver steps on the break. At that point the car starts decelerating at a constant rate of 30 feet per second squared until it stops. How long does it take to stop? What is the concavity of the position function? Ans: 5 sec, concave down.
22. What information about a function $f(x)$ does the sign of the derivative $f^{\prime}(x)$ provide?
23. What information about a function $f(x)$ does the sign of the second derivative $f^{\prime \prime}(x)$ provide?
24. Is it possible to cover the whole $x y$-plane with graphs of antiderivatives of the function $f(x)=x$? Explain!
25. What is Calculus good for?
