The **Galactic Exoplanet Survey Telescope (GEST)**

D. Bennett (Notre Dame),

J. Bally (Colorado), I. Bond (Auckland),

E. Cheng (GSFC), K. Cook (LLNL),

D. Deming, (GSFC) P. Garnavich (Notre Dame),

K. Griest (UCSD), D. Jewitt (Hawaii),

N. Kaiser (Hawaii), T. Lauer (NOAO),

J. Lunine (Arizona), G. Luppino (Hawaii),

J. Mather (GSFC), D. Minniti (Catolica),

S. Peale (UCSB), S. Rhie (Notre Dame),

J. Rhodes (GSFC), J. Schneider (Paris Obs.),

G. Sonneborn (GSFC),

R. Stevenson (Notre Dame), C. Stubbs (UW),

D. Tenerelli (Lockheed), N. Woolf (Arizona)

and P. Yock (Auckland)
Talk Outline

- What do we *need* to know to determine the abundance of habitable or Earth-like planets?
 - What does Earth-like mean?
- The basics of microlensing
- The Scientific Return
 - Simulated planetary light curves
 - Planet detection sensitivity
 - Lens star detection
 - What we learn from the planets that are detected
- **GEST** Mission Design
- Why is a Space mission needed for microlensing?
 - Resolve main sequence stars
 - Continuous light curve coverage
Requirements for a Habitable Planet

• A 1 M\textsubscript{⊕} planet at 1 AU orbiting a G or K-star?
• How about a 1 M\textsubscript{⊕} planet at 1.5 or 2 AU?
 – with a greenhouse atmosphere
• Is a gas giant at 5 or 10 AU needed, as well?
• Are planets orbiting M-stars more or less habitable than those orbiting G-stars?
• Is there a Galactic Habitable Zone?
• Moons of giant stars?
• Is a large moon important for the development of life?
• Could life be based upon NH\textsubscript{3} instead of H\textsubscript{2}O?
• …
• It seems likely that we cannot understand habitability until we understand the basic properties of planetary systems.
The Physics of μ-lensing

- Foreground “lens” star + planet bend light of “source” star
- Multiple distorted images
 - Total brightness change is observable
- Sensitive to planetary mass
- Low mass planet signals are rare – not weak
- Peak sensitivity is at 2-3 AU: the Einstein ring radius, R_E
Planetary Microlensing Light Curve

- Top panel shows stellar images at ~1 mas resolution centered on lens star
- Einstein ring in green
- Magnified stellar images shown in blue
- Unmagnified image is red outline
- The observable total magnification is shown in the bottom panel
- A planet in the shaded region gives a detectable deviation

Video from B. S. Gaudi (IAS)
Microlensing Rates are Highest Towards the Galactic Bulge

High density of source and lens stars is required.
GEST Mission Simulation

• Continuous observations of 2.1 sq. deg. central Galactic bulge field: ~10^8 stars
• Simulated images based on HST luminosity function from Holtzman et al (1998)
• ~15,000 events in 4 seasons
• microlensing probability, $\tau = 3.4 \times 10^{-6}$, assumed
 – at Galactic coordinates: $l = 1.3^\circ$, $b = -2.4^\circ$
 – ~1.6σ lower limit on measured value
Simulated Planetary Light Curves

- Planetary signals can be very strong
- There are a variety of light curve features to indicate the planetary mass ratio and separation
- Exposures every 10 minutes

\[M_{\text{lens}} = 0.69 M_\oplus \quad M_{\text{planet}} = 0.7 M_\oplus \quad M_{\text{moon}} = 0.02 M_\oplus \]

\[\Delta I_{\text{lens}} = -0.1 \]

\[a = 5 \text{AU} \]
Visible G-star lenses with typical S/N

More light curves

Low S/N
GEST’s Double Planet Detections

Detection of Jupiter & Saturn

- \(\varepsilon = 10^{-3}, 3 \times 10^{-4} \); \(a = 5.2, 9.5 \) AU
- \(\sim 100 \) events

- \(\varepsilon = 3 \times 10^{-6}, 10^{-3} \); \(a = 1, 5.2 \) AU
- \(\sim 10 \) events
Planet Detection Sensitivity Comparison

- Sensitivity to all Solar System-like planets
 - Except for Mercury & Pluto
- Most sensitive technique for $a \geq 1$ AU
- “Habitable” planets in Mars-like orbits
- Mass sensitivity is $1000 \times$ better than v_r
- Assumes 12.5σ detection threshold
- GEST is complementary to Kepler

Lens Star Identification

- Flat distribution in mass
 - assuming planet mass \propto star mass
- 33% are “visible”
 - within 2 I-mag of source
 - not blended w/ brighter star
 - Solar type (F, G or K) stars are “visible”
- 20% are white, brown dwarfs (not shown)
- Visible lens stars allow determination of stellar type, distance, and relative lens-source proper motion
Planetary Semi-major Axes

For faint lens stars, separation determination yields a to factor-of-2 accuracy, but the brightest ~30% of lens stars are detectable. For these stars, we can determine the stellar type and semi-major axis to ~10-20%.
GEST Mission Design

- 1-1.5m telescope: 3 mirror anastigmat
- 2.1 sq. deg. FOV
- shutter for camera
- 0.2”/pixel => 6×10^8 pixels
- continuous view of Galactic bulge
 - for 8 months per year
 - 60 degree Sun avoidance
 - high Earth Orbit
- Images downloaded every 10 minutes
 - < 10 Mbits/sec mean data rate
- <0.03” pointing stability
 - maintained >95% of the time
Inclined Geosynchronous Orbit
Wide FOV CCD Camera

Focal Plane layout: 32 Labs 3k × 6k CCDs, 10µm pixels; 600 Mpix total

Bulge stars are highly reddened, so Lincoln IR optimized CCDs improve sensitivity.

GEST shutter concept – no single point failure mode. 4-side abutable Lincoln CCD
Microlensing From the Ground vs. Space

- Target main sequence stars are not resolved from the ground.
- Poor photometry for unresolved stars, except for very high magnification events.
- Poor light curve coverage.
- Ground surveys can only find events with $a \approx R_E$
 - No measurement of planetary abundance vs. semi-major axis.
Light curves from a LSST or VISTA Survey

Simulations use real VLT seeing and cloud data, and realistic sky brightness estimates for the bulge. The lightcurve deviations of detectable $\sim 1 \, M_\oplus$ planets have durations of ~ 1 day, so full deviation shapes are not measured from a single observing site - except for unusually short events.
Ground vs. Space-Based Planet Discoveries

Comparison of planetary discovery rates for GEST and ambitious ground-based surveys. Most ground-based discoveries are high magnification events with low mass lenses. Does not include high mass planets which can be detected with giant source stars.

Ground-based surveys only find planets at a separation close to the Einstein Ring radius. Only a space-based survey can measure planetary abundance as a function of separation.
GEST’s Planetary Results

- Planets detected rapidly - even in ~20 year orbits
- average number of planets per star down to $M_{\text{mars}} = 0.1 M_{\oplus}$
 - Separation, a, is known to a factor of 2.
- planetary mass function, $f(\epsilon=M_{\text{planet}}/M_{\star}, a)$
- for $0.3 M_{\text{sun}} \leq M_{\star} \leq 1 M_{\text{sun}}$
 - planetary abundance as a function of M_{\star} and Galactocentric distance
 - planetary abundance as a function of separation (known to ~10%)
- abundance of free-floating planets down to M_{mars}
- the ratio of free-floating planets to bound planets.
- Abundance of planet pairs
 - high fraction of pairs => near circular orbits
- Abundance of large moons (?)
- ~50,000 giant planet transits
GEST Summary

- Straight-forward technique with existing technology
- Discovery class mission
- Low-mass planets detected with strong signals
- Sensitive to planetary mass
- Sensitive to a wide range of separations
 - Venus-Neptune
 - Free floating planets, too
 - Combination with Kepler gives planetary abundance at all separations
- Should be done!