Representations of groups of flows were systematically studied by Gel’fand, Graev and Vershik in the early 1970’s.

In the present paper, the authors consider the smooth case. For a compact Riemannian manifold M without boundary, with dimension at least one and a compact connected Lie group G, they introduce the “gauge group” \mathcal{G} of all smooth mappings of M into G.

The “energy representation” W of the “gauge group” is a specific unitary action on some extension of the Hilbert space H of all square integrable, g-valued 1-forms on M, where g is the Lie algebra of G. It plays an important role in quantum field theory.

The main result of this paper claims that the energy representation W has no nonzero fixed vectors. In some cases (the dimension of M is greater than 1) this result follows from the irreducibility of W proved by Ismagilov, Gel’fand-Graev-Vershik, Albeverio-Hoegh-Krohn-Testard, or Wallach. The proof given in the paper under review applies in the general situation.

The method developed by the authors uses the Gaussian regular representation of the Euclidean group of a real separable Hilbert space.

{For the entire collection see MR 2001f:00037}