
Fate & Transport Homework 2 - Due Feb 10 January 29, 2020

This homework is designed to get you comfortable with Greens functions (in particular
looking up and implementing the appropriate Greens functions, mostly from Polyanin’s
book) as well as to start to understand the role and influence of boundary conditions, which
we did not explore explicitly in class, but are important in many real life situations. Note that
formally the Greens function on finite domains is written as an infinite sum, which typically
you have to truncate - take a large enough number such that the solution converges. This
number is not fixed and for smaller time you usually need more terms, but looking at the
solution you should have a sense if it is converged or not. Note in particular that if you do
not include enough terms you may get funny oscillations in your solutions (these are called
Gibbs phenomena and should be avoided as much as possible).
The final two problems are meant to get you comfortable with the finite difference and
random walk methods that we explored in class and how these compare with the fully
analytical solutions given by the Greens function method. You may use the codes provided
from class and modify them, but make sure you study them carefully and know what they
are doing.

Problem 1. Greens Functions on a Finite Domain

Consider the following problem

∂C

∂t
=
∂2C

∂x2
0 < x < 20

C(x, t = 0) = δ(x− 10)
∂C

∂x
|x=0 =

∂C

∂x
|x=20 = 0 (1)

This set of equations describes a problem where you have a pulse of unit mass centered at
x = 10 that diffuses in a finite domain where 0 < x < 20. At the edges of the domain none
of the solute can enter of leave the domain (so called no flux boundary conditions - recall
from Fick’s law that a diffusive flux is proportional to ∂C

∂x
). Can you think of a system this

might represent?

(i) Based solely on your physical intuition what do you expect the long term behavior of
this system to look like (i.e. what is the solution to this problem as t →∞ and after what
characteristic timescale τ do you expect the system to reach this asymptotic solution? In
estimating τ think about the dimensions of constraints that you have in this system (i.e. the
size of the domain L and the diffusion coefficient D and anything else that might exist).

(ii) Now implement the solution(s) as written in Polyanin and plot them for several times
t = 0.001τ , t = 0.01τ , t = 0.1τ , t = τ and t = 10τ where τ is the timescale you estimated
in (i). Describe the resulting solutions and in particular discuss the role of the boundaries
relative to the infinite domain problem that we studied in class.
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(iii) Now implement the solution for different initial condition C(x, t = 0) = δ(x− 15), that
is a pulse located at x = 15, which is no longer centered and plot the solutions again, in
particular describing similarities and differences with solutions from (ii).

Problem 2. Greens Functions on a Semi-infinite Domain

Consider the following problem

∂C

∂t
= D

∂2C

∂x2
0 < x <∞

C(x, t = 0) = 0 C(x = 0, t) = C0; (1)

This set of equations describes a problem where you have a semi-infinite domain and you
are imposing a constant concentration at the inlet boundary. Can you think of a system this
might represent?

(i) Look up the Greens function for this type of problem and write down the solution for
this particular setup. Now look at the structure of the Greens function and compare it to
that of the infinite domain - what are the similarities and differences? In particular compare
this to the solution we derived in class where for the infinite domain with initial condition
C(x, t = 0) = H(−x). What physically are the similarities and differences in these setups?

(ii) Calculate the total mass in the domain as a function of time, i.e. M(t) =
∫∞
0
C(x, t) and

describe how it depends on the diffusion coefficient D, which is the only thing that allows
transport in the system. Does the amount of mass always increase in time? does it always
increase at the same rate, speed up or slow down? Does this make sense to you (think about
why it might change with time based on the fact that the diffusive flux into the domain,
that is the thing that is adding mass into the system, is proportional to ∂C

∂x
|x=0 and how this

might be changing in time).

(iii) Now specifically, set D = 1 and calculate the concentration distribution in the domain
at t = 10. Now double D - how much more or less mass is in the domain? Does the result
make sense to you?

Note: Throughout if you try to do the definite integrals with Mathematica,
it may get angry with you (because of some odd singularities) so do the in-
definite integrals and then evaluate the boundary terms by hand if this is the
case. You can use use Mathematica or Wolfram online Integrator for this -
http://integrals.wolfram.com .

Problem 3. Finite Differences

Change the finite difference code we used in class to solve the following problem
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∂C

∂t
=
∂2C

∂x2
0 < x < 15

C(x, t = 0) = 0 C(x = 0, t) = 1;
∂C

∂x
|x=15,t = 0; (1)

(i) What is the steady state solution to this problem? (do it by hand) Show that at large
times the finite difference solution gives this. Estimate the time it takes to reach this steady
state - again use physical reasoning or the maths to guide you? What is the biggest dif-
ference with the case studied in class where C at the right boundary is 0 (i.e. a Dirichlet
vs Neuman boundary condition)? Plot the solution at various times to help you in your
discussion. Again, pick the times that you plot results at various times based on your chosen
physical/asymptotic time scale (similar to the previous problem). What do differences and
similarities between the two different right boundary conditions represent physically?

(ii) Bonus - if you have time: Change the Greens function solution to the appropriate
one and show that it matches the finite-difference solution.

Problem 4. Random Walks and Greens Functions

Go back to problem 1 and implement a random walk code to solve the same problem. In
particular use 103, 105 and 106 particles to solve the problem.

You may use the code that was presented in class and is available online. Note however that
that in order to implement the no flux boundary conditions you have to bounce particles
that have exited the domain back into the domain assuming an elastic collision (e.g. if a
particle jumps to x = −1 bounce it back to 1 or if a particle jumps to x = 22.5 bounce it
back to x = 17.5). You have to do this at the end of each time step before moving on to
the next one. You may do so by any number of means - my preference is to use the Matlab
function ’find’ to search for particles that have exited the domain and then update just those
positions.

i.e. apple=find(x > 2) returns the elements in the vector x that are greater than 2. Then you
only have to update x(apple)=x(apple)+ whatever. You have to figure out what ’whatever’
is.

Compare results from the random walk to the results obtained from problem 1 and in par-
ticular discuss the influence of using more particles, both in terms of the solution obtained
and the amount of computational time required. To measure computational time you can
either use a feature in Matlab called ’profiler’ or type ’tic’ in the first line of your code and
’toc’ in the very last one - when your code is finished running Matlab will tell you this will
tell you the amount of time that has elapsed.
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