Chapter 1

Specific Weight
\[\gamma = \rho g \]

Ideal Gas Law
\[\rho = \frac{p}{RT} \]

Newtonian Fluid Shear Stress
\[\tau = \mu \frac{du}{dy} \]

Bulk Modulus
\[E_v = -\frac{dp}{dV/V} \]

Speed of Sound
\[c = \sqrt{\frac{dp}{d\rho}} \]

Capillary Rise in a Tube
\[h = \frac{2\sigma \cos \theta}{\gamma R} \]

Chapter 2

Hydrostatic Pressure
\[\frac{dp}{dz} = -\gamma \]

Force acting a plane surface
\[F_R = \gamma \sin \theta \int_A y \, dA \]
\[F_R = \gamma h_c A \]

Effective location of hydrostatic force
\[y_R = \frac{\int_A y^2 \, dA}{y_c A} \]

Buoyant Force
\[F_B = \gamma V \]

Chapter 3

Streamwise Acceleration
\[a_s = V \frac{\partial V}{\partial s}, \quad a_n = \frac{V^2}{R} \]

Bernoulli equation
\[p + \frac{1}{2} \rho V^2 + \gamma \zeta = \text{constant along streamline} \]

Flow Meter
\[Q = A_2 \sqrt{\frac{2(p_1 - p_2)}{\rho [1 - (A_2/A_1)^2]}} \]

Sluice Gate
\[Q = z_2 b \sqrt{\frac{2g(z_1 - z_2)}{1 - (z_2/z_1)^2}} \]
<table>
<thead>
<tr>
<th>Gas</th>
<th>Density</th>
<th>Molecular Weight</th>
<th>Specific Volume</th>
<th>Kinematic Viscosity</th>
<th>Dynamic Viscosity</th>
<th>Kinematic Viscosity</th>
<th>Dynamic Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>1.36</td>
<td>48</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.25</td>
<td>28</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Helium</td>
<td>0.17</td>
<td>4</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.08</td>
<td>2</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>1.58</td>
<td>44</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure (SI Units)

<table>
<thead>
<tr>
<th>Liquid</th>
<th>Density</th>
<th>Molecular Weight</th>
<th>Specific Volume</th>
<th>Viscosity</th>
<th>Viscosity</th>
<th>Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1.00</td>
<td>18</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Sea Water</td>
<td>1.02</td>
<td>18</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Mercury</td>
<td>13.6</td>
<td>201</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Glycolin</td>
<td>1.2</td>
<td>62</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Ethyl Alcohol</td>
<td>0.79</td>
<td>46</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Approximate Physical Properties of Some Common Liquids (SI Units)

TABLE 1.7