Specific Weight

$$\gamma = \rho g$$

Specific Gravity

$$SG=\rho/\rho_{water}$$

Ideal Gas Law

$$\rho = \frac{p}{RT}$$

Newtonian Fluid Shear Stress

$$\tau = \mu \frac{du}{dy}$$

Viscosity

$$\nu = \frac{\mu}{\rho}$$

Speed of Sound

$$c = \sqrt{\frac{dp}{d\rho}}$$

Capillary Rise in a Tube

$$h = \frac{2\sigma\cos\theta}{\gamma R}$$

Hydrostatic Pressure

$$\frac{dp}{dz} = -\gamma$$

Hydrostatic force acting a plane surface

$$F_R = \gamma \sin \theta \int_A y \, dA$$

$$F_R = \gamma h_c A$$

Effective location of hydrostatic force

$$y_R = \frac{\int_A y^2 dA}{\int_A y dA} = \frac{\int_A y^2 dA}{y_c A}$$

Buoyancy Force

$$F_B = \gamma \Psi$$

Bernoulli's equation

$$p + \frac{1}{2}\rho V^2 + \gamma z = \text{constant along streamline}$$

Volume Flow Rate

Approximate Physical Properties of Some Common Liquids (SI Units) M TABLE 1.5

Liquid	Temperature (°C)	Density, $ ho$ (kg/m ³)	Specific Weight, \gamma (kN/m³)	Dynamic Viscosity, μ $(N \cdot s/m^2)$	Kinematic Viscosity, ν (m^2/s)	Surface Tension, ⁿ σ (N/m)	Vapor Pressure, $\frac{p_v}{[N/m^2 \text{ (abs)}]}$	Bulk Modulus, h E_{v} (N/m^{2})
Carbon tetrachloride	20	1,590	15.6	9.58 E - 4	6.03 E - 7	2.69 E - 2	1.3 E+4	1.31 E + 9
Ethyl alcohol	20	789	7.74	1.19 E - 3	1.51 E - 6	2.28 E - 2	5.9 E+3	1.06 E + 9
Gasoline ^c	15.6	680	6.67	3.1 E - 4	4.6 E-7	2.2 E - 2	5.5 E+4	1.3 E+9
Glycerin	20	1,260	12.4	1.50 E + 0	1.19 E - 3	6.33 E - 2	1.4 E - 2	4.52 E + 9
Mercury	20	13,600	133	1.57 E - 3	1.15 E - 7	4.66 E - 1	1.6 E - 1	2.85 E + 10
SAE 30 oil ^c	15.6	912	8.95	3.8 E-1	4.2 E - 4	3.6 E-2	1	1.5 E+9
Seawater	15.6	1,030	10.1	1.20 E - 3	1.17 E - 6	7.34 E - 2	1.77 E + 3	2.34 E + 9
Water	15.6	999	9.80	1.12 E - 3	1.12 E - 6	7.34 E - 2	1.77 E + 3 2.15 E +	2.15 E + 9

Its contact with air

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure (SI Units) 図 TABLE 1.7

	Temperature	Density, $ ho$	Specific Weight,	Dynamic Viscosity,	Kinematic Viscosity,	Gas Constant, ^a R	Specific Heat Ratio, ^b
Gas	(°C)	(kg/m³)	(N/m³)	(N·s/m²)	(m ² /s)	(J/kg·K)	k
Air (standard)	15	1.23 E + 0	1.20 E + 1	1.79 E - 5	1.46 E - 5	2.869 E + 2	1.40
Carbon dioxide	20	1.83 E + 0	$1.80 \pm + 1$	1.47 E - 5	8.03 E - 6	1.889 E + 2	1.30
Helium	20	1.66 E - 1	1.63 E + 0	$1.94 \mathrm{E} - 5$	1.15 E - 4	2.077 E + 3	1.66
Hydrogen	20	8.38 E - 2	8.22 E - 1	8.84 E - 6	1.05 E - 4	4.124 E + 3	1.41
Methane (natural gas)	20	6.67 E - 1	6.54 E + 0	$1.10 \mathrm{E} - 5$	1.65 E - 5	5.183 E + 2	1.31
Nitrogen	20	1.16E + 0	1.14 E + 1	$1.76 \mathrm{E} - 5$	1.52 E - 5	2.968 E + 2	1.40
Oxygen	20	1.33 E + 0	1.30 E + 1	2.04 E - 5	1.53 E - 5	2.598 E + 2	1.40

Values of the gas constant are independent of temperature,

Values of the specific heat ratio depend only slightly on temperature.