Homework 6

Questions: 6.6, 6.22, 6.66, 6.76 and another question
0) Write a $1 / 2-1$ page summary of the NSF video on fluid mechanics that you watched.

1) The three components of velocity in a flow field are given by

$$
\begin{aligned}
& u=x^{2}+y^{2}+z^{2} \\
& v=x y+y z+z^{2} \\
& w=-3 x z-z^{2} / 2+4
\end{aligned}
$$

Determine (a) the volumetric dilatation rate and interpret the results, (b) an expression for the rotation vector. Is this flow an irrotational flow field.

Comment: Make sure to look up the rotation vector in 3-d as it will have three components ($\omega_{\mathrm{x}}, \omega_{\mathrm{y}}$ and ω_{z}), which are not all listed in the notes
2) It is proposed that a 2-d, incompressible flow field be described by the velocity components

$$
\mathrm{u}=\mathrm{Ay} \quad \text { and } \quad \mathrm{v}=\mathrm{Bx}
$$

where A and B are positive constants. (a) Will the continuity equation be satisfied? (b) Is the flow irrotational?, (c) Determine the equation for the streamlines and show a sketch of the streamline that passes through the origin. Indicate the direction of flow along this streamline
3) Two fixed horizontal, parallel plates are spaced 0.2 inches apart. A viscous liquid ($\mu=8 \times 10^{-3} \mathrm{lb}$ s/ft2, $\mathrm{SG}=0.9$) flows between the plates with a mean velocity of 0.9 ft / s. Determine the pressure-drop per unit length in the direction of flow. What is the maximum velocity in the channel?
4) Two immiscible, incompressible, viscous fluids having the same densities but different viscosities are contained between two infinite, horizontal, parallel plates (see figure below). The bottom plate is fixed and the upper plate moves with a constant velocity U. Determine the velocity at the interface. Express your answer in terms of U, μ_{1} and μ_{2}. The motion of the fluid is caused entirely by the movement of the upper plat, i.e. there is no pressure gradient in the x-direction. The fluid velocity and shearing stress is continuous across the interface between the two fluids. Assume laminar flow.

Comment: Depart from the Navier-Stokes equations in each fluid (i.e. one set of N-S equations for fluid 1 and another for fluid 2) to solve this problem, neglecting terms and justifying why they can be neglected

Fixed plate

5) Flow Between Concentric Cylinders - In the figure below we depict two concentric cylinders. The inside one at radius $\mathrm{R}_{\text {in }}$ rotates at angular velocity $\omega_{\text {in }}$ and the outside one at radius $\mathrm{R}_{\text {out }}$ at angular velocity $\omega_{\text {out. }}$. There is a fluid of viscosity μ between $\mathrm{R}_{\text {in }}$ and $\mathrm{R}_{\text {out }}$.

Departing from the two dimensional Navier-Stokes equations in cylindrical coordinates (in the r-theta plane only) derive the velocity profile between the two rotating cylinders (i.e. $\mathrm{R}_{\text {in }}<\mathrm{r}<\mathrm{R}_{\text {out. }}$.). State your assumptions and justify them clearly. Define your boundary conditions clearly too.

Hint: The solution to the ODE $\quad x^{2} \frac{d^{2} f(x)}{d x^{2}}+x \frac{d f(x)}{d x}-f(x)=0$ is $f(x)=\frac{C_{1}}{x}+C_{2} x$ where C_{1} and C_{2} are constants. This is known as an Euler equation.

