Homework 7

Questions: 7.10, 7.14, 7.20, 7.24 and 7.38

- 0) Please send your group video to Diogo via email. If you've already done so great!
- 1) The pressure drop Δp , across a pump can be expressed as

 $\Delta p = f(D, \rho, \omega, Q)$

Where *D* is the impeller diameter, ρ the fluid density, ω the rotational speed and Q the volume flowrate. Determine a suitable set of dimensionless parameters.

2) Under certain conditions, wind blowing past a rectangular speed limit sign can cause the sign to oscillate with a frequency ω (see figure below). Assume that ω is a function of the sign width b, sign height h, wind velocity, V, air density ρ , and an elastic constant, k (dimensions of Force x Length). Develop a suitable set of pi terms for this problem.

3) The buoyancy force F_B , acting on a body submerged in a fluid is a function of the specific weight, γ , of the fluid and the volume V, of the body. Show by dimensional analysis that the force must be directly proportional to the specific weight.

4) A liquid flows with a velocity V through a hole in the side of a large tank. Assume that

$V=f(h,g,\rho,\sigma)$

where h is the depth of fluid above the hole, g is acceleration due to gravity, ρ is the fluid density and σ is the surface tension. The following data were obtained by changing h and measuring V, with a fluid density 1000 kg/m³ and surface tension = 0.074 N/m

V(m/s)	3.13	4.43	5.42	6.25	7.00
h(m)	0.50	1.001	.50	2.00	2.50

Plot these data by using appropriate dimensionless variable. Could any of the original variables have been omitted?

5) The drag , D, on a sphere located in a pipe through which a fluid is flowing is to be determined experimentally (see figure). Assume that the drag is a function of the sphere diameter, d, the pipe diameter, D, the fluid velocity, V, and the fluid density, ρ .

(a) What dimensionless parameters would you use for this problem?

(b)Some experiments using water indicate that for d=0.2 in, D=0.5 in and V=2 ft/s the drag is 1.5×10^{-3} lb. If possible estimate the drag on a sphere located in a 2 ft diameter pipe through which water is flowing with a velocity of 6 ft/s. The sphere diameter is such that geometric similarity is maintained. If it is not possible, explain why not.

FIGURE P7.38