Groundwater - Homework 4 Due November 8

Question 1

(a) You are studying a confined aquifer and deem that pumping has caused the system to reach its steady state

Two observation wells are placed at a distance of 3.3 and 11 meters from a pumping well. The well is pumped at a flow rate of 1250 liters/minute. The depth to water is 22m and 15 m for the first and second well respectively.

What is the transmissivity of the aquifer? If the thickness of the aquifer is 10m, what is the hydraulic conductivity?

(b) You are studying an unconfined aquifer and deem that pumping has caused the system to reach its steady state

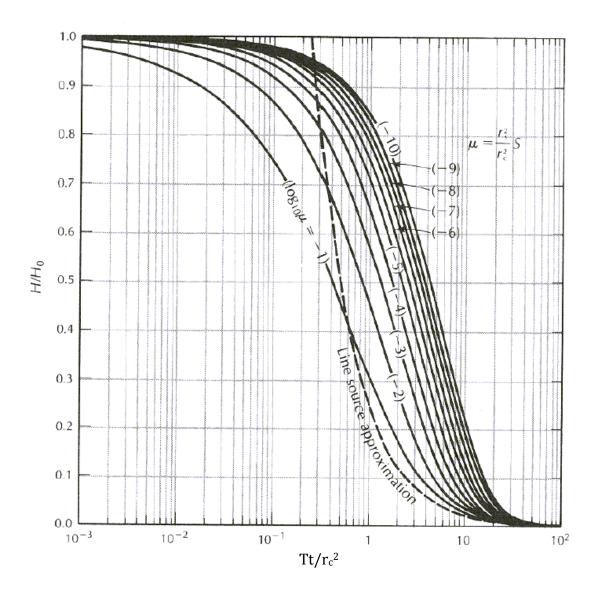
Two observation wells are placed at a distance of 2.2 and 7.9 meters from the pumping well. The well is pumped at a flow rate of 750 litres/minute The depth to water is 4m and 1 m for the first and second well respectively. What is the hydraulic conductivity of the aguifer, if the depth to the bottom of the aguifer is 10m?

(c) *Conceptual*: Given what you know about transient pumping tests, how would you determine or make an executive decision that the system has reached steady state. Look carefully at the analytical solutions for transient pumping before writing an answer.

Consider the data given below for a pumping test conducted at a field site. Drawdown is recorded at two wells. The flow rate is 20m³/min and the wells are located at 2m (well 1) and 5 m (well 2) from the pumping well.

- (i) Determine the Transmissivity and Storativity of the aquifer considering both data sets (for the sake of experience try using both a graphical, using the graph in the powerpoint notes and analytical approximation- also a good check for consistency).
- (ii) Are the measurements at both wells consistent? If not, look at some of the assumptions associated with the interpretation method you chose to use and discuss which you may think are dubious.

Time(min)	Drawdown 1(m)	Drawdown 2(m)
0.01	0.00003449	0.0000000
0.02	0.00201575	0.00000000
0.03	0.02475452	0.00000000
0.05	0.12230100	0.0000073
0.09	0.35204287	0.00017920
0.16	0.73013674	0.00506511
0.29	1.23422890	0.04076822
0.50	1.82894647	0.15696208
0.88	2.48279807	0.38876343
1.54	3.17311686	0.73467203
2.69	3.88520458	1.17030853
4.71	4.61004669	1.66762408
8.25	5.34228203	2.20414039
14.44	6.07877675	2.76446701
25.27	6.81771682	3.33888363
44.22	7.55805797	3.92151439
77.38	8.29920096	4.50889296
135.41	9.04080254	5.09900236
236.97	9.78266630	5.69067808
414.69	10.52467993	6.28325077
725.71	11.26677920	6.87633662
1269.99	12.00892742	7.46971592
2222.48	12.75110362	8.06326297
3889.33	13.49329580	8.65690590
6806.33	14.23549711	9.25060362


The following data was obtained from a slug test. As per the Geological Survey guidelines three were performed.

- Knowing nothing about the well casings and just looking at this data, which of the interpretation methods that you learned would you use and why? Now you are told that the case does not fully penetrate the aquifer. Would you still use the same method?
- (ii) Apply your method of choice to infer the aquifer parameters knowing that the radius of the screen is 0.5 m, the radius of the casing is 0.6m and the length of well screen is 4m

t(s)	H1(cm)	H2(cm)	H3(cm)
0.10	79.88008996	79.86012243	79.90006247
0.25	79.70056180	79.65076451	79.75039022
0.50	79.40224439	79.30305359	79.50155925
0.75	79.10504357	78.95686058	79.25350466
1.00	78.80895517	78.61217885	79.00622404
2.00	77.63564268	77.24843330	78.02479296
3.00	76.47979855	75.90834568	77.05555342
4.00	75.34116269	74.59150559	76.09835396
5.00	74.21947891	73.29750973	75.15304503
6.00	73.11449482	72.02596181	74.21947891
7.00	72.02596181	70.77647240	73.29750973
8.00	70.95363494	69.54865883	72.38699344
9.00	69.89727294	68.34214509	71.48778777
10.00	68.85663811	67.15656166	70.59975221
20.00	59.26545765	56.37504718	62.30406265
30.00	51.01025213	47.32442915	54.98314230
40.00	43.90493089	39.72682430	48.52245278
50.00	37.78932422	33.34896157	42.82091428
100.00	17.85041281	13.90191548	22.92038375
200.00	3.98296547	2.41579067	6.56679989
300.00	0.88871972	0.41980147	1.88141967
400.00	0.19830017	0.07295056	0.53903576
500.00	0.04424675	0.01267691	0.15443633
1000.00	0.00002447	0.00000201	0.00029813

A slug test was made with a piezometer that has a casing radius of 2.54 cm and a screen of radius 2.54 cm. A slug of 4000 cm³ of water was injected, which raised the water level by 197.3 cm. The well completely penetrated a confined stratum that was 2.3 m thick. The decline in head with time is given the following chart below. Plot the data on a semilogarithmic paper and find the transmissivity and storativity using the Cooper-Bredehoeft-Papadopolous method. A copy of the CBP figure is available on the following page along with a table with values from the original paper on this work.

Elapsed Time (s)	Head (cm)
0	197.3
1	185.4
2	178.6
3	173.6
5	167.7
7	158.8
10	147.0
13	140.0
17	129.2
22	118.4
32	99.6
53	74.0
84	51.3
119	35.5
170	23.3
245	15.2
400	8.7
800	4.3

Tt/r_c^2	$\alpha = 10^{-6}$	$\alpha = 10^{-7}$	$\alpha = 10^{-8}$	$\alpha = 10^{-9}$	$\alpha = 10^{-10}$
0.001	0.9994	0.9996	0.9996	0.9997	0.9997
0.002	0.9989	0.9992	0.9993	0.9994	0.9995
0.004	0.9980	0.9985	0.9987	0.9989	0.9991
0.006	0.9972	0.9978	0.9982	0.9984	0.9986
0.008	0.9964	0.9971	0.9976	0.9980	0.9982
0.01	0.9956	0.9965	0.9971	0.9975	0.9978
0.02	0.9919	0.9934	0.9944	0.9952	0.9958
0.04	0.9848	0.9875	0.9894	0.9908	0.9919
0.06	0.9782	0.9819	0.9846	0.9866	0.9881
0.08	0.9718	0.9765	0.9799	0.9824	0.9844
0.1	0.9655	0.9712	0.9753	0.9784	0.9807
0.2	0.9361	0.9459	0.9532	0.9587	0.9631
0.4	0.8828	0.8995	0.9122	0.9220	0.9298
0.6	0.8345	0.8569	0.8741	0.8875	0.8984
0.8	0.7901	0.8173	0.8383	0.8550	0.8686
1.0	0.7489	0.7801	0.8045	0.8240	0.8401
2.0	0.5800	0.6235	0.6591	0.6889	0.7139
3.0	0.4554	0.5033	0.5442	0.5792	0.6096
4.0	0.3613	0.4093	0.4517	0.4891	0.5222
5.0	0.2893	0.3351	0.3768	0.4146	0.4487
6.0	0.2337	0.2759	0.3157	0.3525	0.3865
7.0	0.1903	0.2285	0.2655	0.3007	0.3337
8.0	0.1562	0.1903	0.2243	0.2573	0.2888
9.0	0.1292	0.1594	0.1902	0.2208	0.2505
10.0	0.1078	0.1343	0.1620	0.1900	0.2178
20.0	0.02720	0.03343	0.04129	0.05071	0.06149
30.0	0.01286	0.01448	0.01667	0.01956	0.02320
40.0	0.008337	0.008898	0.009637	0.01062	0.01190
50.0	0.006209	0.006470	0.006789	0.007192	0.007709
60.0	0.004961	0.005111	0.005283	0.005487	0.005735
80.0	0.003547	0.003617	0.003691	0.003773	0.003863
100.0	0.002763	0.002803	0.002845	0.002890	0.002938
200.0	0.001313	0.001322	0.001330	0.001339	0.001348

TABLE 1. Values of H/H_0 for a Well of Finite Diameter

Taken from

http://www.agu.org.proxy.library.nd.edu/pubs/crossref/1973/WR009i004p01087 .shtml

(If you want to download this paper and you get an error you can get it by going through the library web page and searching for the journal Water Resources Research).

Below we have data from another slug test (only a single one). The well is known to be fully penetrating. The screen and casing radius are both 2.54cm.

- (i) Of the methods you know, which do you deem applicable and why?
- (ii) Now calculate the aquifer transmissivity with this method. Assume a storage coefficient of 2 x 10^-5.

Time(s)	h(cm)
0.00	60.0000000
1.00	50.59032345
2.00	29.92571343
3.00	3.76429619
4.00	-21.27701652
5.00	-39.35525494
6.00	-46.72534080
7.00	-42.46552433
8.00	-28.47856115
9.00	-8.82403433
10.00	11.40866695
11.00	27.38454871
12.00	35.64824560
13.00	34.83608462
14.00	25.83814806
15.00	11.41424975
16.00	-4.60326393
17.00	-18.29936757
18.00	-26.60968263
19.00	-27.98063636
20.00	-22.62114846
21.00	-12.31765777
22.00	0.11014223
23.00	11.55636894
24.00	19.38634066
25.00	22.02416840
26.00	19.24447881
27.00	12.12194372
28.00	2.67687549
29.00	-6.67583117
30.00	-13.72881613

Question 6 - Field Data

Download the slug test data from the homework web page and estimate the hydraulic conductivity of the soils at the ND-LEEF site in St Patrick's Park