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Abstract Mixing is driven by an interplay between diffusion and flow-induced concentra-
tion gradients. Accurately describing the effect of flow heterogeneity on the mixing state of
a plume is a challenging problem that has important repercussions on the modeling of plume
dilution and chemical reactions. In this technical note, we propose a simple, semi-analytic
measure to quantify the local mixing potential at a point based on the local properties of
the flow-induced strain. Specifically, it is the trace of the local strain matrix squared, Tr(s2),
which we demonstrate controls mixing from a point source over small times. Due to its
mathematically similar influence to a shear flow on mixing, we propose an ansatz to attempt
to use this metric as a predictor for mixing. We test its performance via random walk particle
tracking simulations in heterogeneous Darcy flow through lognormal permeability fields.
The ansatz appears to work better and better the more heterogeneous the flow, unlike more
traditional approaches that rely on weak heterogeneity assumptions. While we cannot rig-
orously demonstrate why this is, we find it sufficiently promising that it may guide future
model development.

Keywords Mixing · Heterogeneous media · Flow deformation metrics

1 Introduction

Mixing is the process that locally homogenizes a solute plume. It is controlled by the interplay
between the formation of concentration gradients by velocity gradients, and their smoothing
by diffusion. A fluid parcel moving in a heterogeneous flow suffers deformation; for an
incompressible flow, stretching along one direction is always accompanied by compression
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in another, enhancing mixing (Le Borgne et al. 2010; Bolster et al. 2011a, b; Engdahl et al.
2014). Understanding this link between flow-induced deformation and solute dilution is key
to understanding and quantifying mixing in real-world systems in an efficient and accurate
manner.

Quantifying mixing is a problem of great practical and theoretical interest (Dentz et al.
2011). For one, mixing brings different chemical species together and is the main driver of
multispecies, rate-limited reactions; thus, any method that purports to quantify collocation-
driven chemical reactions and/or mesoscale concentrations must accurately capture mixing
properties (De Simoni et al. 2005, 2007; Chiogna et al. 2012; deAnna et al. 2013; Benson and
Meerschaert 2008; Porta et al. 2016; Sanchez-Vila et al. 2010; Paster et al. 2014, 2013, 2015).
Real-world aquifers are often heterogeneous, leading to complex and scale-dependent solute
plume structure. Resolving all relevant scales is demanding, if not impossible, and upscaled
descriptions become necessary. However, many current models fail to capture the complex
scale dependency of plume structure adequately (Burchard and Rennau 2008; Le Borgne
et al. 2011, 2010).

In recent years, several theories for mixing have emerged, improving our understanding
and predictive ability (Le Borgne et al. 2015; de Barros et al. 2012; Bolster et al. 2011b;
Le Borgne et al. 2010, 2013; Borgne et al. 2014). However, many limitations still remain.
While it is clear that the underlying flow structure can influence mixing, a strong quantitative
link betweenwell-defined and easily computable flow properties andmixing remains elusive,
especially in highly heterogeneous settings. For weakly heterogeneous systems, classical
perturbation approaches appear to do well (de Barros et al. 2015; Bolster et al. 2011b). While
some quantitative approaches work for highly heterogeneous systems [e.g., lamellar models
(Le Borgne et al. 2015)], they are typically not as well suited to describe point sources,
requiring a line or planar source for sufficient sampling of the background flow at all times.
The goal here is to provide an efficient measure of mixing based on local flow properties,
and shed light on fundamental flow and transport elements that control it.

Several measures to describe the mixing state of a plume exist. Here we focus on the
dilution index (Kitanidis 1994), an entropy-based measure, which represents an effective
volume occupied by the plume. It is closely related to other measures of mixing [e.g.,
scalar dissipation (Le Borgne et al. 2010)]. To quantify and explain how these global mea-
sures are driven by local flow properties, a number of metrics have been proposed. In 2d,
this includes the Okubo–Weiss parameter (de Barros et al. 2012), based on the eigenval-
ues of the local strain and rotation. Its time history as a plume moves through a medium
correlates with the behavior of the dilution index (de Barros et al. 2012), but a strong quan-
titative link over long times is yet to be identified. Another measure in the same vein is
the largest eigenvalue of the right Cauchy–Green deformation tensor (Engdahl et al. 2014).
Intuitively, these measures rest on the idea that it is the local stretching, compressing, and
shearing effects induced by the underlying flow field that play the main role in driving
dilution. In this technical note, we develop a new measure of dilution based on a similar
concept, the time history of the plume as it samples the shearing effects of the local flow
field.

2 Equations of Motion

We assume transport at the scale of interest can be described by the advection dispersion
equation (ADE),
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∂c

∂t
+ ∇ · [v(x)c] − D∇2c = 0 . (1)

The underlying velocity field v is steady and incompressible. For simplicity, and to focus
on the role of a heterogeneous advection term, we consider dispersion as homogeneous and
isotropic, characterized by a constant dispersion coefficient D. Additionally, we consider this
equation to be in dimensionless form. Following de Barros et al. (2012) and approximating
the local velocity field by a Taylor expansion around a point within a moving coordinate
system, rendering that point stationary, the ADE may be approximated as

∂c

∂t
+ ∇ · [εxc] − D∇2c = 0, (2)

where ε is the deformation tensor at x, εi j = (∇v) j i |x . For a pulse initial condition, c(x, t =
0) = δ(x), the solution is (e.g., Van Kampen 2007)

c(x, t) = exp
{−x · [2κ]−1x

}

√
(2π)d det[κ(t)] , (3)

where κ solves equation

dκ

dt
= εκT + κεT + 2D. (4)

For isotropic dispersion D = Dδi j , where δi j represents the Kronecker delta. The superscript
T denotes matrix transposition. For this setup, the dilution index is given by

E(t) = exp

(
−

∫
c(x, t) log[c(x, t)] dx

)
= (2πe)d/2

√
det[κ(t)], (5)

where d is the number of spatial dimensions. The dilution index is a global measure of
dilution (i.e., integrated over the whole space). Up to here our approach follows that of de
Barros et al. (2012), but in what follows we deviate from it.

Solving (4) directly is challenging, so we take an alternate Lagrangian approach (Risken
1989; Van Kampen 2007). The equivalent Langevin equation to (2) for the movement of a
solute particle is

dx
dt

= εx + √
2Dξ , (6)

where x is the position of a particle and ξ is a d-dimensional vector of independent, delta-
correlated Gaussian-distributed Langevin forces with zero mean and unit variance. Note that
this is a Langevin equation for an Ornstein–Uhlenbeck process in multiple dimensions. Its
solution is

x(t) =
∫ t

0
eεuξ(t − u) du. (7)

In our moving coordinate frame, the first moments of the position are all zero, i.e.,μi (t) =
〈xi (t)〉 = 0, and variances σi j (t) = 〈xi (t)x j (t)〉 play the role of κ , as they are also governed
by (4); they both represent the spread of the solute plume around its mean position. Thus,
the dilution index E = (2πe)d/2

√
det σ . From (7),

σ (t) = 2D
∫ t

0
eεueεT u du. (8)
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We remind the reader at this point that the exponential of a matrix A is defined by its Taylor-
series expansion (Bellman 1997):

eA =
∑

i�0

Ai

i ! = 1 + A + A2

2
+ · · · , (9)

where 1 is the identity matrix, and the commutator of two matrices A and B is given by:

[A, B] = AB − BA. (10)

Note that evaluating the above integral is complicated by the fact that the integrand is the
product of matrix exponentials. For matrix exponentials, if [A, B] = 0 (i.e., matrices A and
B commute), then eAeB = eA+B ; otherwise this may not hold. Recall that the deformation
tensor ε can be decomposed into strain s = (ε + εT )/2 (symmetric part) and rotation
ξ = (ε − εT )/2 (antisymmetric part), ε = s + ξ . Thus, σ is most easily computed when
[ε, εT ] = 2[ξ , s] = 0. While this provides some interesting end-member cases, for arbitrary
heterogeneous flows, we do not anticipate [ε, εT ] = 0 to hold.

However, even when they do not commute, closed form analytical solutions for σ can be
found, see “Appendix.” In two dimensions, the final result for the dilution index agrees with
previous derivations (de Barros et al. 2012). In three dimensions, the result depends not only
on the strain and rotation eigenvalues, but also on the orientation of vorticity relative to the
principal axes of strain. The result may be obtained in closed form, but it is complex and
provides little physical insight.

3 Linking Dilution to Flow Properties

For late times, the local expansion of the velocity field v = εx around the injection point
becomes dubious as particles will move far away from this point, violating assumptions in the
expansion. Thus, let us focus on early times. Consider (8) and evaluate the integral through
an early-time Taylor expansion of the exponentials (eεt ≈ 1+ εt + ε2t2/2). This leads to:

E(t) = (4πeDt)d/2

V0

√

1 + Tr(s2)t2

6
. (11)

Here, the important term to focus on is Tr(s2), the trace of the square of the strain matrix. In
(11), the leading-order behavior is controlled by dispersion. A quadratic contribution is miss-
ing; it corresponds to the combined effect of dispersion and compressibility, which is absent
for incompressible flow. Note also how to this order rotation plays no role: Rotation by itself
cannot affect mixing. In fact, any local effects of rotation on mixing are due to interactions
between dispersion, rotation and strain, and enter the formulas through the commutator of
rotation and strain, due to the symmetric nature of σ . Because they arise from the interaction
between three processes, their effect is of higher order.

Recall, our purpose is to construct a metric for calculating the dilution index, determined
by the plume’s sampling of gradients in the underlying velocity field, while taking into
account that the deformation tensor varies throughout the flow field. To this end, consider for
a moment the canonical shear flow with velocity vx = αy, for which

si j = 1

2

⎛

⎝
α 0 0
0 α 0
0 0 0

⎞

⎠ , ξi j = 1

2

⎛

⎝
0 α 0

−α 0 0
0 0 0

⎞

⎠ . (12)
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For this setup, the dilution index at all times can be shown to be (Bolster et al. 2011a)

E(t) = (4πeDt)d/2

√

1 + (αt)2

12
. (13)

We see that the dilution index for this simple flow has the same structure as (11) and they are
identical if we define an effective shear rate corresponding to the local strain s:

α =
√
2 Tr(s2). (14)

Thus we argue that the Tr(s2) provides a local measure of how efficient a given point is
at mixing due to local velocity gradients.

4 Ansatz: Interpreting a Heterogeneous Flow as an Effective Shear

While we have provided an additional metric to quantify the mixing intensity at a point in a
heterogeneous flow that is applicable to any incompressible flow, we noted in “Introduction”
that several such metrics already exist and one has to ask what the benefit of one more might
be. Ideally we want to be able to use metrics like this to build effective upscaled models that
can predict mixing over scales larger than over which this local expansion and early-time
approximation holds.

With this inmind, we propose the following ansatz: Compute the dilution index of a plume
in a heterogeneous flow by representing it as an effective, time-variable shear flow as sampled
by the plume and defined based on (14). It is critical to note here that this is not a formal
derivation or proof of an effective model. Generalizing Bolster et al. (2011a), the Greens
function for the ADE with a time-variable shear flow with constant isotropic dispersion can
be solved exactly via a combination of Fourier transforms and the method of characteristics,
leading to dilution index:

E(t) = (4πeDt)d/2
√
1 + A(t)(2B(t) − A(t)) + C(t) − B2(t), (15)

where:

A(t) =
∫ t

0
α(u) du, B(t) = 1

t

∫ t

0
uα(u) du, C(t) = 1

t

∫ t

0
A2(u) du. (16)

The dimensionless functions A, B and C encode the time history of the plume’s sampling
of shear effects through different integrals that involve the effective shear rate α. For α we
will take an effective shear rate defined according to Eq. (14). Since our effective shear rate
varies throughout a spatially extended plume in a heterogeneous background flow, we must
also provide an averaging procedure. We consider two variants, the value at the plume center
of mass and a plume average. Considering the plume in terms of Lagrangian particles, with
x(i) the position of the i th particle, and xcm the position of the plume center of mass, these
two definitions for the effective shear rate lead to:

αcm(t) =
√
2 Tr(s2 |xcm (t)) αav(t) =

∑

i

√
2 Tr(s2 |x(i)(t)). (17)
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5 Numerical Simulations

To test the performance of our ansatz, we simulate transport through heterogeneous velocity
fields, using standard randomwalk particle trackingmethods (Risken 1989).We present two-
dimensional simulations, but the model formulation holds in three dimensions. We follow
a standard approach of solving Darcy flow through random realizations of lognormally dis-
tributed, multi-Gaussian-correlated hydraulic conductivity fields, often used as idealizations
to study flows in hetereogeneous aquifers (e.g., Dagan and Neuman 2005; Gelhar, LW 1993).
Flow was solved with a finite volume formulation. We set the correlation length to l = 1 and
considered several variances, σ 2

log K = 0.1, 0.5, 1, 2, 4, for the lognormal conductivity field,
representing different degrees of heterogeneity. A sample conductivity and velocity field are
presented in Fig. 1. Flow was driven by a head drop along the x direction. The resulting
velocity field was normalized to unit spatial average along the horizontal direction, vx = 1.

For transport, the dispersion coefficient was chosen so as to consider two values of Péclet
number, Pe = vx l/D = 102, 103. The initial condition was a point source. In all cases,
5million particles were used. Simulations were run up to a time tmax = 102l/vx , so as
to focus on early, non-ergodic dynamics. To obtain the dilution index directly from the
particle tracking simulations, we reconstruct the concentration field using a Gaussian kernel
smoothing method (Morariu et al. 2008; Fernàndez-Garcia and Sanchez-Vila 2011). Spatial
variables are presented normalized by the correlation length, and temporal variables are
normalized by l/vx .

Figure 2 shows a typical sample time series of the two effective shear rates as determined
from our simulations. As expected, the plume average approach smooths out the more drastic
fluctuations observed for the center of mass approach. These are then used to compute (15)
for comparison with the actually measured dilution indices. Figure 3 shows the directly
measured dilution index alongwith the predictions of our ansatz for each of our Péclet number
and variance combinations, discussed in further detail below. Interestingly, the averaging
character of the quantities A, B and C in Eq. (15) lead to similar results for the dilution
index estimated based on αav and αcm . This means that knowledge of either the center of

Fig. 1 Example lognormal, Gaussian-correlated hydraulic conductivity field with variance σ 2
log K = 4 and

associated Darcy flow field
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Fig. 2 Typical time series of effective shear, using the plume average and center of mass approaches [see
Eq. (17)]. Results shown correspond to a transport realization with Pe = 103 and a hydraulic conductivity
field with variance σ 2

log K = 4

mass trajectory or plume-averaged properties is sufficient to provide a reasonable basis for
the application of our ansatz.

In the presence of weak flow heterogeneity (σ 2
log K � 1), we found that our ansatz signifi-

cantly overpredicted the observed dilution index at late simulation times, but its performance
appears to improve with heterogeneity strength. Results were qualitatively similar for the
two simulated values of Péclet number (102 and 103), with our method generally providing
slightly better estimates for the higher value. This is in stark contrast to standard perturbation
approaches, which rely on the assumption of weak heterogeneity (e.g., de Barros et al. 2015).
At present, we lack a satisfying explanation for the breakdown of our ansatz at low hetero-
geneities and future efforts will focus on establishing formal conditions for its applicability,
in order to better understand the origins of its limitations. Nonetheless, it appears to provide
a promising approach for strong heterogeneity, which typically poses the greatest challenge
for traditional theories. Unlike perturbation solutions our approach is not bottom up; it does
not clearly link predictions with properties of the measured conductivity field and relies on
the time series produced by numerical simulations.

6 Discussion and Conclusions

Departing from an ADE formulation, we derived a formal local, short-time equivalence
between the effects on mixing of an arbitrary incompressible, steady flow and a shear flow
with an effective shear rate determined by the trace of the local strain tensor squared. Based
on this equivalence, we proposed an ansatz to quantify the dilution index, a proxy for mixing,
of a point source solute plume in a heterogeneous velocity field. In stark contrast to more
classical perturbation-based approaches, our ansatz appears to work well for systems with
higher degrees of heterogeneity than for those with weak heterogeneity. While we do not
have a robust explanation or set of criteria for this, we find promise in the approach, as highly
heterogeneous systems tend to be more difficult to model.

Although we have considered homogeneous and isotropic dispersion for theoretical sim-
plicity and in order to highlight the role of the velocity field, the formalism presented heremay
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Fig. 3 Evolution of the dilution index as measured directly from simulations and predicted by the two variants
of our effective shear approach. Each column corresponds to a Péclet number and each line to a hydraulic
conductivity variance

be generalized to accommodatemore complex dispersion tensors. The numerical results were
presented for two-dimensional Darcy flow through lognormal, Gaussian-correlated conduc-
tivity fields, but the theoretical framework is in principle applicable to three dimensions and
arbitrary flow fields. It also suggests an approach to predicting dilution based on theoretical
considerations about the structure of the underlying flow field, which is of particular impor-
tance given the high degree of uncertainty often associated with real site characterization.
Examining the performance of our approach under these generalizations will be the subject
of future work. Additionally, the work we presented here focuses on a point source initial
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condition and one must be cautious in generalizing any conclusions to other initial and/or
boundary conditions given the nonlinear nature ofmixing, e.g., for steady-state plumes (Liedl
et al. 2005; Cirpka and Valocchi 2007; Knutson et al. 2007; Bolster et al. 2007; Cirpka et al.
2012; Hochstetler et al. 2013) .
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Appendix: Full Solution for Dilution Index with Arbitrary Constant Defor-
mation

For an arbitrary deformation tensor for which strain and rotation do not necessarily commute,
we will calculate the exponentials of ε and εT via a result that follows from the Cayley–
Hamilton theorem. Because the exponential function is analytic in the whole complex plane,
we can write:

eεu = aμ(u)εμ,

eλi u = aμ(u)λ
μ
i ,

(18)

where μ runs over 0 to d − 1 (and summation over repeated indices is implied), and the λi ,
i = 1, . . . , d , are the eigenvalues of ε. Since ε and εT have the same eigenvalues, the same
expressions hold if ε is replaced by εT . The time-dependent aμ can be determined by solving
the linear system encoded in the second line, and they are found to be:

aμ(u) = bμj e
λ j u, (19)

where:

bμj = 1
∏

i �= j (λ j − λi )
×

⎧
⎪⎨

⎪⎩

1, μ = d − 1

−∑
i �= j λi , μ = d − 2

∏
i �= j λi , μ = d − 3

. (20)

These formulas are valid in 2- and 3-d (a−1 in 2d should be ignored). Then:

σ (t) = ci j (t)bμi bν jε
μεT ν,

ci j (t) = e(λi+λ j )t − 1

λi + λ j
.

(21)

Note there is no sum implied in the definition of the ci j . Also, these formulas are still valid if
a pair of eigenvalues sums to zero, in which case they are to be understood in the limit. For
such a pair, ci j = t .

We will now focus on the two-dimensional case. The three-dimensional case can be
tackled using similar techniques, but the algebra is substantially more complicated, and fully
characterizing the system requires knowledge of the eigenvalues of strain, the absolute value
of the vorticity and also the orientation of the vorticity vector, for example with respect to
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the principal axes of strain. The final result, while it can be explicitly written, yields little
physical insight and/or utility. However, for two dimensions we have for the eigenvalues of
strain, rotation and deformation λs,i = ±λs, λs ∈ R, λξ ,i = ±λξ , λξ ∈ ıR, and λi = ±λ,

λ =
√

|λs|2 − |λξ |2 ∈ R ∪ ıR, which are all easily seen to be true for 2-d incompressible
flow (ı is the imaginary unit). We can now use the results above to find:

σ (t) = 2D

4λ

[
[sin h(2λt) + 2λt]1 + [cos h(2λt) − 1]ε + εT

λ
+ [sin h(2λt) − 2λt]εεT

λ2

]
.

(22)

Using ε = s + ξ we find:

σ (t) = 2D

4λ

[
[sin h(2λt) + 2λt]1 + [cos h(2λt) − 1]2s

λ

+ [sin h(2λt) − 2λt] s
2 − ξ2 + [ξ , s]

λ2

]
.

(23)

Now from the results for commuting strain and rotation we expect that if [ξ , s] = 0, rota-
tion should play no part, so the ξ2 term is troublesome. However, the application of the
Cayley–Hamilton theorem above means that there is a relation between ε and εT and their
corresponding powers. Specifically, using Eq. (18) for ε and εT and looking at the coefficients
of t2 we find the relation:

ξ2 = λ21 − s2. (24)

Using this relation, we can rewrite σ as:

σ (t) = 2D

λ

{
λt1 + cos h(2λt) − 1

2λ
s + sin h(2λt) − 2λt

4λ2
(2s2 + [ξ , s])

}
. (25)

In this form,we can clearly identify the effect on spreading of pure diffusion, and the coupling
between diffusion and strain, and diffusion, strain and rotation.

Let us now consider the (direct-oriented) basis where s diagonalizes. This basis always
exists, because s is symmetric. Note that if s = 0 it diagonalizes in any basis and our
expressions will still hold. We will use hatted indices (e.g., î) to denote components in this
basis. The matrices s and s2 diagonalize trivially in this basis, but one can also show without
too much effort that:

[ξ , s]î ĵ = −λsRe(λξ )

(
0 1
1 0

)
, (26)

where Re denotes the real part. Incidentally, this shows that in 2-d we have [ξ , s] = 0 iff
there is no rotation or no strain. We thus find:

σî ĵ (t) = 2D

λ

×
(

λt+ cos h(2λt)−1
2λ λs+ sin h(2λt)−2λt

4λ2
2λ2s − sin h(2λt)−2λt

4λ2
2λsRe(λξ )

− sin h(2λt)−2λt
4λ2

2λsRe(λξ ) λt− cos h(2λt)−1
2λ λs+ sin h(2λt)−2λt

4λ2
2λ2s

)

.

(27)
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We can now find the determinant, which is frame independent as long as direct orientation
is kept, directly using this basis. Some manipulation gives:

det σ (t) = 4D2
[
t2 + λ2s

sin h2(λt) − λ2t2

λ4

]
, (28)

and thus the dilution index is:

E(t) = 4πeD

√

t2 + λ2s
sin h2(λt) − λ2t2

λ4
. (29)

This expression recovers the solutions for pure rotation and pure strain found under the
assumption of commuting strain and rotation. Note also that sin h2(x) − x2 is positive for
all x ∈ R ∪ ıR, which implies that strain always has an enhancing effect on mixing.

The case λ = 0, or equivalently |λs| = |λξ |, represents shear flow and must be understood
as the limit of the formulas above. It leads to:

σ (t) = 2Dt

{
1 + t s + t2

3
(2s2 + [ξ , s])

}
, (30)

σî ĵ (t) = 2Dt

(
1 + λst + 2

3λ
2
s t

2 − 2
3λsRe(λξ )t2

− 2
3λsRe(λξ )t2 1 − λst + 2

3λ
2
s t

2

)

, (31)

E(t) = 4πeDt

√

1 + 1

3
λ2s t

2. (32)
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