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Abstract The spatial Markov model (SMM) is an upscaled Lagrangian model that effectively captures
anomalous transport across a diverse range of hydrologic systems. The distinct feature of the SMM relative
to other random walk models is that successive steps are correlated. To date, with some notable exceptions,
the model has primarily been applied to data from high-resolution numerical simulations and correlation
effects have been measured from simulated particle trajectories. In real systems such knowledge is practi-
cally unattainable and the best one might hope for is breakthrough curves (BTCs) at successive downstream
locations. We introduce a novel methodology to quantify velocity correlation from BTC data alone. By dis-
cretizing two measured BTCs into a set of arrival times and developing an inverse model, we estimate veloc-
ity correlation, thereby enabling parameterization of the SMM in studies where detailed Lagrangian velocity
statistics are unavailable. The proposed methodology is applied to two synthetic numerical problems, where
we measure all details and thus test the veracity of the approach by comparison of estimated parameters
with known simulated values. Our results suggest that our estimated transition probabilities agree with sim-
ulated values and using the SMM with this estimated parameterization accurately predicts BTCs down-
stream. Our methodology naturally allows for estimates of uncertainty by calculating lower and upper
bounds of velocity correlation, enabling prediction of a range of BTCs. The measured BTCs fall within the
range of predicted BTCs. This novel method to parameterize the SMM from BTC data alone is quite parsimo-
nious, thereby widening the SMM’s practical applicability.

1. Introduction

The heterogeneous structure of natural porous media, ranging from pore to aquifer scales (e.g., Cushman,
2013) leads to so-called anomalous transport, which is transport that cannot be adequately described in an
upscaled manner by an effective Fickian advection-dispersion equation. Such anomalous transport is ubiq-
uitous in hydrologic settings and has been observed in subsurface (e.g., Benson & Wheatcraft, 2001) and
surface flow environments (e.g., Aubeneau et al., 2014; Haggerty et al., 2001). It is typically characterized by
a broad range of spatial and/or temporal scales that must be represented in any modeling framework that
is to be successful in replicating observed behaviors.

To this end, several anomalous transport frameworks have emerged (e.g., Benson et al., 2000; Berkowitz
et al., 2006; Haggerty & Gorelick, 1995). Here we will focus on a model that belongs to the broader family of
continuous time random walks (CTRW). Within a CTRW, a solute plume is discretized into a large number of
particles, whose trajectories are represented by jumps that have distance and/or time increments randomly
chosen from probability distributions. Most CTRW methods, as applied in hydrologic settings to date,
assume particle jumps are independent and identically distributed. However, increasing evidence shows
that at scales of interest, the independence assumption may be questionable and that correlation effects
between successive jumps play an important role (Le Borgne et al., 2008a). In particular, particle trajectories
display intermittency (de Anna et al., 2013; Kang et al., 2014), which can be observed as a particle’s velocity
and acceleration alternates between durations of high and low variability. This intermittent behavior cannot
be adequately described by the aforementioned models.

One model that accounts for correlation is the spatial Markov model (SMM; Le Borgne et al., 2008a, 2008b).
It describes a plume with a large number of discrete particles that transition through space and time follow-
ing probabilistic rules; however, unlike other random walk models, the SMM fixes particle spatial jump size
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and then enforces correlations between successive transitions, a step essential to accurately capturing inter-
mittency (de Anna et al., 2013) and which is particularly important for advection-dominated systems (Bol-
ster et al., 2014). The SMM has been successful in modeling transport across a diverse range of synthetic
systems of interest, including flows through highly heterogeneous permeability fields (Le Borgne et al.,
2008a, 2008b), complex pore scale systems (Kang et al., 2014), inertially dominated systems (Bolster et al.,
2014; N. Sund et al., 2015) as well as both synthetic and field-scale fractured media (Kang et al., 2011, 2015,
2016). Recently, it was also extended to predict reactive transport (N. Sund et al., 2017; Sund et al., 2016) as
well as mixing and dilution effects (N. L. Sund et al., 2017).

A key ingredient of the SMM is the so-called transition matrix, which encodes correlation effects. Accurately
parameterizing this is paramount to the model’s success. In most studies to date, high-resolution particle-
tracking methods enable direct measurement of the transition matrix by simulating particle trajectories.
Note that in this paper, ‘‘measured’’ refers to simulated data. This particle-tracking approach is computation-
ally cumbersome and, without simplification, restricts application of the SMM to numerically simulated sys-
tems. A more practical approach assumes a simplified diagonal structure for the transition matrix that
depends on only one parameter, which can be fit to data. This was done by Kang et al. (2015) to successfully
model field-scale push-pull data from an experimental fractured media experiment. While a very efficient
and practical approach, the assumed structure of the transition matrix may be limiting. The strength of such
an approach is parameterization of the SMM without the need of Lagrangian statistics from high-resolution
numerical simulations and only the use of breakthrough curve (BTC) data, which in any practical context is
the best one can hope for.

To detect correlation effects, one must at a minimum have two BTCs measured at different downstream
locations. Here our goal is to propose an approach by which to parameterize the SMM using BTC data alone.
We will do so within the context of synthetic numerical data for two idealized flows, which have previously
been studied to test the SMM (N. Sund et al., 2015; Sund et al., 2016). The benefit of this is that we can
know exactly what the actual transition matrix is and compare it to the estimates with our proposed
method. Additionally, our method allows for the calculation of uncertainty in the transition matrix, which
can be propagated through the SMM, enabling predictions of BTCs with quantifiable ranges of uncertainty.
This paper is organized as follows. Section 2 describes the flow fields under consideration, the simulation
framework for conservative transport, and the SMM as used in this study. Section 3 proposes a method for
quantifying velocity correlation from two measured BTCs. Section 4 compares predicted BTCs using correla-
tion as estimated by our approach with actual BTCs. Section 5 provides a summary and conclusions.

2. Methods

2.1. Model Setup
2.1.1. Flow Fields
In this study, we simulate conservative solute transport through two simple steady state laminar flows in
2-D. These are deliberately chosen as they have previously served as benchmarks for studying and validat-
ing the SMM (N. Sund et al., 2015; Sund et al., 2016). In those studies, the transition matrix for the SMM was
measured by high-resolution direct numerical simulation of Lagrangian particle trajectories. Here we will
estimate the transition matrix only through the use of BTC data. Thus, these simple flows serve as ideal con-
ceptual systems that will act as proof of concept that velocity correlation can be quantified using BTC data
alone.

The first system is a horizontal Poiseuille flow in a channel of dimensionless height, H 5 1, bounded by
0 < y < H with unit mean velocity (�u5 1

6). The velocity field is given by

uðyÞ5yð12yÞ: (1)

For this flow, we consider transport in an advection-dominated system such that the P�eclet number, Pe,
equals 1,000. We define Pe5 �uH

Dm
, where Dm is the molecular diffusion coefficient. This case is chosen because

it has been shown that correlation effects are important (N. Sund et al., 2015).

The second system is Stokes flow through a periodic array of impermeable cylindrical obstacles (Figure 1).
The flow field is pressure driven from left to right and is periodic in both x and y directions. The diameter
(D) of each cylinder is chosen such that D50:4L0, where L0 is the length of the periodic cell. For this problem
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setup, the P�eclet number is defined as Pe5
�uL0
Dm

. We test two cases, Pe
5200 and Pe51; 000. The incompressible version of the lattice Boltz-
mann method (LBM) is employed to obtain the velocity field for this
system (He & Luo, 1997).
2.1.2. Simulation Transport
We assume that transport in these systems is governed by the
advection-diffusion equation, which we model using a standard Lagrang-
ian random walk method. In all cases we impose a flux-weighted pulse
initial condition at x 5 0. The solute plume is discretized into N particles,
whose trajectories are defined by the Langevin equation:

xiðt1DtÞ5xiðtÞ1uiDt1ni
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmDt
p

yiðt1DtÞ5yiðtÞ1viDt1gi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmDt
p

i51 . . .N

; (2)

where xi and yi are longitudinal and vertical positions, ui and vi are
velocity components in the x and y directions, Dt is a fixed time step,
and n and g are independent identically distributed random numbers
sampled from a standard normal distribution. No flux boundary condi-
tions at solid boundaries are enforced by elastic reflection. Note that
N was chosen to be sufficiently large, such that results converged and
noise effects were minimized. For systems 1 and 2, N5106 and 105,
respectively.

2.2. Spatial Markov Model
2.2.1. Transport and Breakthrough Curves
Particle motion in the SMM is governed by the following Langevin equation:

xn115xn1L; (3)

tn115tn1sn: (4)

At every model iteration, each particle jumps a fixed distance L with random times, sn values, which are cho-
sen from a distribution, wðsÞ. The systems under consideration can be divided into spatially homogeneous
cells of distance L. Hence, in each iteration, we model the time taken for a particle to pass through one cell.
The time it takes each particle to reach the outlet of the nth cell is the sum of the travel times for each cell,Pn

i51 si . Tracking travel times for all particles gives the distribution of arrival times at the outlet of each cell
and allows for modeling of BTCs, which show the temporal change in concentration of a solute at a fixed
location. The SMM assumes that the distribution of travel times and correlation effects are stationary over
each cell (N. L. Sund et al., 2015). Thus, for our two systems, we choose L sufficiently large, such that L is a
characteristic jump length which satisfies the velocity field stationary requirement. Note that the chosen
cell length for the Poiseuille and Stokes systems are L55H and 2:5D, respectively.

If subsequent travel times, i.e., subsequent sn values, are independent random samples, then the SMM
becomes an uncorrelated CTRW with fixed spatial increments. However, a strength of the SMM is that for
each particle, sn is correlated to sn21. In the systems under consideration, diffusion is the only mechanism
by which a particle can change streamlines. Hence, a particle that traverses a cell on a fast (slow) streamline
is more likely to stay on a fast (slow) streamline in the subsequent cell, particularly in a strongly advection-
dominated flow (Bolster et al., 2014), such as in the Pe51; 000 case. Correlating successive time steps ena-
bles the SMM to capture this behavior. In heterogeneous porous media, the intermittent pore structure and
incompressibility of the fluid result in 3-D anomalous transport and similar persistence of particle velocities
(Kang et al., 2014).
2.2.2. Transition Matrix
The probability transition matrix is the means by which the SMM accounts for correlation of travel times
between neighboring cells. The distribution of travel times for each cell is sorted from fastest to slowest
and divided into k classes of equal probability, i.e., class 1 contains the fastest and class k contains the slow-
est times. In this study, travel times are divided into 10 classes, which is estimated to be the minimum

Figure 1. Schematic of the second system. Only one periodic computational
cell is depicted.
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number of classes necessary to capture the entire range of correlation effects (Le Borgne et al., 2011; N. L.
Sund et al., 2015). Each transition matrix element, Ti;j , is the probability that a particle has a travel time in
class j in the nth cell, given its travel time was in class i in the n – 1th cell.

Ti;j5Pðsn11 2 class jjsn 2 class iÞ: (5)

In numerical simulations, where each particle is tracked, each element in the transition matrix can be calcu-
lated directly from the Lagrangian particle statistics (Le Borgne et al., 2008b, 2011). For a large number of
particles, a steady flow, and spatially periodic system, the transition matrix between any two subsequent
cells is identical. Tracking particle travel times for only the first two cells enables calculation of the transition
matrix, which results in knowledge of BTCs at every cell outlet in the system (e.g., Bolster et al., 2014; N.
Sund et al., 2015). The transition matrices for both systems considered here, generated by applying this
brute force method, are measured for comparison purposes (Figures 3 and 5). Details on the implementa-
tion of the transition matrix into the SMM and into (3) are available in many previous papers (e.g., Bolster
et al., 2014; Le Borgne et al., 2011).

3. Estimating Correlation From BTCs Alone

Using the SMM is contingent on knowledge of velocity correlation. From a simplicity standpoint, this makes
the uncorrelated CTRW more attractive, as one BTC provides enough information to create a PDF of arrival
times and run the model. However, in highly correlated systems the uncorrelated CTRW fails to accurately
predict BTCs downstream, making it necessary to account for correlation. Since correlation is a key ingredi-
ent of the SMM, two BTCs are needed to infer correlation strength. In this section, we introduce a novel
method for estimating velocity correlation by relating BTCs measured at neighboring cells.

Our proposed methodology is valid when the assumptions of the SMM hold. These assumptions are that
the distribution of travel times and correlation effects for each cell are stationary. The periodic geometries
in our idealized conceptual steady flows satisfy these assumptions. However, periodicity is not required. The
SMM had been successfully applied to a diverse range of systems, including nonperiodic highly heteroge-
neous porous media (Le Borgne et al., 2008a, 2008b) and field-scale fractured media (Kang et al., 2015). In
systems that violate these assumptions, such as turbulent flows (N. Sund et al., 2015), an alternative model
will be better suited. Note that our proposed method is valid when BTCs are measured at distances L and
2L from the particle source.

3.1. Finding PDFs of Arrival Times
Discretizing BTCs into a finite set of arrival times allows for calculation of a discrete probability distribution
(Figure 2: Step 1). We measure two BTCs, which will be denoted BTC1 and BTC2. Note that the initial pulse
particle injection occurs at x 5 0, and BTC1 and BTC2 are measured at x 5 L and x52L, respectively.

We divide each measured BTC into a set of finite arrival times, si values, i51; . . . ;M. In this study, M was
approximately 500 for each discretized BTC. For each si, its corresponding area of the BTC, Ai, can be

Figure 2. Schematic outlining the procedure to estimate the transition matrix.
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expressed as the area under the BTC in the range, ½si 2si21
2 ; si112si

2 �. It follows that the probability of a particle
arriving with time si is the ratio of Ai to the area of the entire BTC:

PðsiÞ5
AiXM

j51
Aj

: (6)

The procedure described above must be completed for both BTC1 and BTC2. The travel time distribution for
cell 2 is also needed, but the spatial Markov model assumes the velocity statistics are stationary across cells.
This implies the arrival time distribution from x 5 0 to x 5 L is equivalent to the travel time distribution from
x 5 L to x52L. BTC2 gives the arrival time distribution at x52L, starting from x 5 0.

3.2. Classifying Arrival Times and Construction of a System of Equations
The transition matrix classifies particle arrival times from fastest to slowest and quantifies the probability
that a particle changes classes after traversing successive spatial cells. Therefore, it is necessary to create
time arrival classes. The distribution of arrival times can be sorted into equiprobable bins, where for k clas-
ses each bin has probability 1

k (Figure 2: Step 2). Bin 1 contains the fastest arrival times and bin k contains
slowest arrival times. It is then possible to calculate the conditional probability, Pðsijbin kÞ, of a si arrival
time in a given bin k.

The discretized PDFs obtained from BTC1 and BTC2 as well as the conditional probabilities for each arrival
time and corresponding bin give sufficient information to estimate each element in the transition matrix.
Recall that the PDF obtained for BTC2 represents the probabilities of times it takes a particle to travel from
x 5 0 to x52L. Additionally, the PDF of BTC1 is the probabilities of times it takes a particle to travel from
x 5 0 to x 5 L, which assuming stationarity is equivalent to the distribution of times for a particle to travel
from x 5 L to x52L. Let sz

2 be an arrival time at x52L; sa
1 be an arrival time at x 5 L, and sb

1 be the time it
takes a particle to travel from x 5 L to x52L. Then the probability of a sz

2 arrival time is the sum of all combi-
nations of sa

1 and sb
1 such that sa

11sb
15sz

2.

Pðsz
2Þ5

X
sa

11sb
15sz

2

Pðcell 15sa
1ÞPðcell 25sb

1jcell 15sa
1Þ: (7)

There is not enough information to solve equation (7) from the measurements of two BTCs as sb
1 is depen-

dent on sa
1. However, equation (7) can be written in terms of the elements of the transition matrix and prob-

abilities of arrival times:

Pðsz
2Þ5

X
i

X
j
sa

1
1sb

1
5sz

2

Pðcell 15sa
1;bin iÞTi;jPðcell 25sb

1jbin jÞ: (8)

Let BTC2 be discretized into Q points and recall that the transition matrix contains k classes. Then if Q � k2,
equation (8) can be used to construct a system of equations, where the number of equations is greater than
or equal to the number of unknowns.

Figure 3. (left) The measured transition matrix calculated from Lagrangian statistics in the Poiseuille system. (right) The
estimated transition matrix using the outlined estimation method.
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m1;ð1;1Þ � � � m1;ðk;kÞ

� . .
.

�

mQ;ð1;1Þ � � � mQ;ðk;kÞ

0
BBB@

1
CCCA3

T1;1

�

Tk;k

0
BB@

1
CCA5

Pðs1
2Þ

�

PðsQ
2 Þ

0
BB@

1
CCA: (9)

Here row z corresponds to the zth discretized arrival time on BTC2,
where z51;Q is the fastest/slowest arrival times, respectively. Element

mz;ði;jÞ5
P

sa
11sb

15sz
2

Pðcell 15sa
1;bin iÞPðcell 25sb

1jbin jÞ can be inter-

preted as the contribution of probability for all the combinations of
arrival times in class i after cell 1 that transition to class j in cell 2 and
sum to sz

2. All elements in the probability contribution matrix are
known, as well as the probability for each arrival time for BTC2, thus
enabling the systems of equations to be solved and the transition
matrix to be recovered.

3.3. Transition Matrix Statistics: Upper and Lower Bounds
In theory, as Q, the number of points BTC2 is discretized into,
approaches infinity, the procedure outlined above will yield the actual
transition matrix. However, discretizing BTC2 into a finite set induces
error. In practice, only an estimation of the transition matrix can be
achieved. As long as Q equals the number of elements in the transi-
tion matrix, then in principle we should be able to estimate correlation
effects. For each sz

2, we can use equation (9) to write

Pðsz
2Þ5

Xk

i

Xk

j

mz;ði;jÞTi;j: (10)

A least squares method is employed to minimize the normðPðsz
2Þ2

Pk
i

Pk
j mz;ði;jÞTi;jÞ, providing an estimate for

each Ti;j where mz;ði;jÞ > 0. If mz;ði;jÞ50, then Ti;j50 minimizes the norm. A Ti;j estimated as zero indicates that

no combination of class i and class j times can be combined to equal time s2
z . After iterating this process for all

s2
z arrival times, a range of estimated Ti;j values is obtained for each matrix element. The number of estimates

obtained for each element is equal to the number of discrete times in BTC2s PDF. Elements are typically overes-

timated when mz;ði;jÞ is orders of magnitude smaller than Pðs2
z Þ, as can be the case for late times on heavy tails.

For cases such as these, alternative binning procedures such as logarithmic weighting may be preferable (e.g.,
Bolster et al., 2014; Le Borgne et al., 2011). For each Ti;j set, we account for overestimates by filtering elements
that exceed a threshold, 0.4 and 0.2 for Pe51; 000 and 200 respectively, thereby allowing for accurate estima-
tion of transition matrix values. These thresholds were determined as follows. A typical set of estimated Ti;j val-
ues contains a subset of clearly wrong estimates that correspond to estimates made using small mz;ði;jÞ values

in the probability contribution matrix, as well as a cluster of similar estimates that correspond to estimates
made when mz;ði;jÞ values are large. By inspecting these estimated Ti;j sets, we set a threshold that is greater

than the values contained in the cluster of estimates, but smaller than values which are clearly artifacts due to

102 103

t

100

101

102

103

104

C

Pe = 1000

Actual
SMM
Uncorrelated

Figure 4. A comparison of predicted BTCs using an uncorrelated CTRW, pre-
dicted BTCs using the spatial Markov model with estimated correlation, and
the actual BTCs at x55L (blue), 10L (green), 20L (magenta), and 50L (red) in the
Poiseuille system.

Table 1
The Mean Squared Error Is Calculated for All Estimated BTCs in Each Experiment

Mean squared error Stokes: Pe 5 200 Stokes: Pe 5 1,000 Poiseuille: Pe 5 1,000

Estimated SMM: 5L 56 305 905.2
Uncorrelated CTRW: 5L 365 11,806 2,899
Estimated SMM: 10L 46 78 1,010.4
Uncorrelated CTRW: 10L 248 4,227 6,879
Estimated SMM: 20L 42 27 1,137.2
Uncorrelated CTRW: 20L 165 1,456 15,906
Estimated SMM: 50L 38 11 1,580.4
Uncorrelated CTRW: 50L 104 1,301 41,733
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small mz;ði;jÞ values. This process thereby filters the estimated values down to the elements in which we have

the most confidence, elements with large values in the probability contribution matrix.

For each Ti;j set, the mean and standard deviation is calculated. This enables the construction of three matri-
ces, a matrix with the mean estimated element values and matrices one standard deviation above and
below the mean. Each matrix is then normalized so that the sum of each row equals 1. After this normaliza-
tion procedure, the lower and upper bound matrices can be used to propagate uncertainty, yielding a range
of concentrations for predicted BTCs rather than just a fixed value. This allows the spatial Markov model to
be run while incorporating a degree of uncertainty, which may be useful from the perspective of risk assess-
ment (Bolster et al., 2009; de Barros et al., 2011).

4. Results and Discussion

The proposed method for estimating the transition matrix is tested on simulation data from the Poiseuille
and Stokes flow systems. BTCs are measured at x 5 L and x52L and the mean estimated transition matrix is
used to predict BTCs at cell outlets further downstream.

Figure 5. Actual versus estimated matrices in the Stokes system. (left) The measured transition matrices calculated using
Lagrangian statistics. (right) Their estimated counterparts.

Table 2
Correlation Strength, IC, Is Calculated for the Measured and Estimated Transition Matrices Using IC5 Tmax 2Tmin

Tmax
, Where Tmax Is

the Average of the Maximum Values From Each Row

Transition matrix
correlation strength: IC Measured IC Mean matrix IC Lower matrix IC Upper matrix IC

Stokes: Pe 5 200 0.3268 0.3664 0.2910 0.4880
Stokes: Pe 5 1,000 0.8324 0.7889 0.6618 0.9406
Poiseuille: Pe 5 1,000 0.6829 0.7423 0.6348 0.8776
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Figure 3 compares the estimated and actual transition matrices for
the Poiseuille system with Pe51; 000. Notice the strong diagonal cor-
relation and low probabilities in the upper right and lower left corners
on the measured transition matrix. This indicates a particle’s current
travel time is highly dependent on its travel time in the previous cell.
The estimated transition matrix captures this diagonally dominant fea-
ture. The estimated matrix overestimates the strength of correlation
along the diagonal, resulting in underestimates of the lower left and
top right corners. Despite these differences, the total correlation
strength of the measured and estimated matrices is similar (Table 2).
Running the SMM with the estimated matrix accurately predicts
BTCs downstream (Figure 4) and outperforms an uncorrelated CTRW
(Table 1). The earliest predicted arrival times are slightly faster than
actual values due to the fact that transitions between fast arrival times
(upper left corner of matrix) are overestimated.

Similar results were found in the Stokes flow system. Figure 5 shows
the estimated and measured transition matrices for Pe51; 000; 200.
Again, when Pe51; 000, there exists a strong diagonal correlation and
low probabilities in the upper right and lower left corners on the mea-
sured transition matrix, which is captured in the estimated matrix. The
diagonal elements as well as the upper right and lower left corners
are slightly overestimated. However, the majority of estimated matrix
elements, 79 out of 100, have less than a 2% error when compared to

the actual measured values, which provides a comparable estimation of correlation strength (Table 2) for
predicting downstream BTCs. Diffusive effects diminish the strong correlation in the Stokes system when
Pe5200. This is clear by the decreased variance of values in the measured transition matrix, which also is
found in the estimated matrix (Figure 5), as well as the decreased correlation strength (Table 2). Despite the
decreased dominance of advection, the measured transition matrix still exhibits some correlation structure,
notably with slightly higher transition matrix values in the upper left and lower right corners. In this low Pe
number case, predicted BTCs are less sensitive to transition matrix values and so an uncorrelated CTRW pre-

dicts downstream BTCs with sufficient accuracy. This agrees with
previous research that showed correlation effects can be neglected
at Pe numbers of low order, Pe < Oð100Þ (Bolster et al., 2014).

Figures 6 and 7 show predicted BTCs downstream using the estimated
transition matrix in the Stokes flow system with Pe51; 000 and 200,
respectively. At Pe51; 000, the SMM with the estimated transition
matrix clearly outperforms the uncorrelated CTRW and accurately
predicts tailing behavior (Table 1). The estimated SMM also correctly
predicts inflection points at x520L; 50L. The inflection points at x55L;
10L are slightly underestimated, but they are more accurately pre-
dicted when compared with the uncorrelated model. As expected, the
uncorrelated random walk method is able to accurately predict BTCs
at Pe5200 (Figure 7). The SMM with the estimated transition matrix
also accurately predicts BTCs. Thus, the proposed method to estimate
the transition matrix captures BTC characteristics in both a strongly
and weakly correlated system.

The proposed estimation method calculates a range of possible val-
ues for each element in the transition matrix because we calculate
every value in the transition matrix for each discretized time in BTC2.
We have demonstrated that in the systems under consideration,
selecting the mean of this range enables us to capture the dominant
matrix structure and accurately approximate values for the transition
matrix. In addition to this mean matrix, we constructed matrices

101 102

t

100

101

102

103

C

Pe = 1000

Actual
SMM
Uncorrelated

Figure 6. A comparison of predicted BTCs using an uncorrelated CTRW, pre-
dicted BTCs using the spatial Markov model with estimated correlation, and
the actual BTCs at x55L (blue), 10L (green), 20L (magenta), and 50L (red) in the
Stokes system with Pe 5 1,000.

101 102

t

100

101

102

103

C

Pe = 200

Actual
SMM
Uncorrelated

Figure 7. A comparison of predicted BTCs using an uncorrelated CTRW, pre-
dicted BTCs using the spatial Markov model with estimated correlation, and
the actual BTCs at x55L (blue), 10L (green), 20L (magenta), and 50L (red) in the
Stokes system with Pe 5 200.
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using values one standard deviation above and below the mean (Figure 8). Note the lower transition matrix
is less correlated, while the upper matrix contains stronger correlation than the mean (Figure 2). Thus, these
matrices can be regarded as a lower and upper bound, and account for uncertainty.

In all our cases, the measured BTCs are contained within the predicted BTC range generated using the SMM
with the upper and lower correlation matrices (Figure 9). Correlation strength is positively related to the
range of arrival times for a given BTC. Consequently, the strongly correlated estimates will have the fastest
and slowest arrival times for each predicted BTC. Interestingly, if the lower and upper uncertainty matrices
are chosen such that they are truly bounds, then their respective predicted BTCs appear to intersect twice
at points along the measured BTC. Note the uncorrelated matrix and identity matrix are the absolute extre-
mum of possible lower and upper bounded matrices.

The lower and upper transition matrices in the SMM should represent the least and most correlated transi-
tion matrices that one might expect in a given system. This ensures that the actual BTC lies in the range of
predicted BTCs. In this study, using 1 standard deviation to create upper and lower matrices created a

Figure 8. The (left) lower and (right) upper bound matrices for the Stokes system with Pe 5 1,000.

Figure 9. The predicted range of BTCs using the upper and lower bounded matrices in the Stokes system with Pe 5 1,000
at (top left) x55L, (top right) x510L, (bottom left) x520L, and (bottom right) x550L. Gray is the predicted BTC range,
black is the measured BTC, and green is the predicted BTC using the SMM with the mean correlation estimate.
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predicted space that intersected the actual data. We envision that applying these upper and lower bounded
transition matrices will be especially beneficial when predicting BTCs in laboratory and field systems, where
errors in measurements will exist. Hence, in addition to enabling parameterization of the SMM using only
BTC data, we have improved upon the current SMM framework by incorporating a scheme to classify
uncertainty.

5. Conclusions

In this study, we answer our initial research question, ‘‘Does BTC data alone allow for parameterization of
the SMM?’’ We demonstrate, through a novel theoretical mathematical framework, that it is in fact possible
to calculate the transition matrix in stationary periodic flows using only data from two BTCs. Although in
theory it is possible to recover the exact transition matrix, in practice, due to computational constraints and
limited observational data, we achieve an estimation of the transition matrix by discretizing measured BTCs
into finite sets of arrival times, and solving a system of equations that relates arrival time probabilities to
transition matrix elements.

Our theoretical framework was put to the test using simulated experimental data. We considered two
benchmark 2-D conceptual systems, a Poiseuille channel flow and a Stokes flow around an impermeable
cylindrical obstacle, with Pe5200; 1; 000. Only BTC data measured at the outlet of the first two cells was
used to estimate correlation statistics, parameterize the SMM, and predict BTCs downstream. Additionally,
we estimated bounds with more highly and weakly correlated matrices, which were applied to predict a
range of possible BTCs and account for uncertainty induced in the discretization process.

Results showed excellent agreement between predicted and actual BTCs, thereby validating the underlying
approach for both weakly and strongly correlated systems. Specifically, the errors between predicted and
measured BTCs were relatively small and in all cases actual BTCs fell within the range of the predicted range
of uncertainty. Although we are only considering simple flows, the proposed framework can easily be
applied to more complex systems that satisfy the SMM’s underlying assumptions, thus improving our pre-
dictive power in modeling transport through field porous media systems and enhancing the applicability of
the SMM beyond systems where Lagrangian statistics are calculated. A sample of the code used to imple-
ment our proposed method is openly shared and available for download via GitHub (see Acknowledge-
ments section for link).
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