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Abstract The scales of heterogeneity present in geologic media make modeling solute transport
extremely challenging, even in idealized laboratory settings. The spatial Markov model (SMM) is an
anomalous transport model that has been shown to accurately capture solute transport in a broad range
of highly complex and heterogeneous hydrogeologic settings. However, to date, its applications are almost
entirely limited to synthetic, numerically simulated systems due to the dense data required to parameterize
it, which are typically unobtainable in real experiments. Here we apply a novel SMM inverse model
that required only breakthrough curve measurements from laboratory transport experiments in
zeolite-packed columns that are known to display anomalous transport. We introduce an experimental
design that allows for simultaneous measurements of breakthrough curves at multiple sampling locations
within a one-dimensional column setup. For the first time, we apply a fully parameterized SMM to
successfully predict downgradient breakthrough curves. Results show that breakthrough curve prediction
accuracy significantly improves when accounting for correlation effects in these experiments, a feature
that the SMM is specifically designed to capture but that most traditional anomalous transport frameworks
ignore. We do so for two different Péclet numbers, providing a parsimonious framework that can potentially
account for correlation statistics in different field-scale studies.

1. Introduction

A variety of studies spanning several decades now show that solute transport in the subsurface displays
behavior that is not consistent with predictions of classical models such as the advection-dispersion equation
(Benson et al., 2000; Dentz & Berkowitz, 2003; Feehley et al., 2000; Goltz & Roberts, 1986; Haggerty & Gorelick,
1994; Harvey et al., 1994; Harvey & Gorelick, 2000; Major et al., 2011; Zinn & Harvey, 2003). Tracer experiments
in field systems commonly show “anomalous,” or non-Fickian transport, characterized by (1) early tracer break-
through; (2) overestimated and underestimated mass recovery at early and late times, respectively; (3) tailing,
or a gradual decrease in concentration through time, resulting in elevated concentration levels at late time;
and (4) increased contaminant storage and rebound when compared to Fickian models. At the root of efforts
to model transport in hydrologic systems accurately is the need to understand the processes and mechanisms
that control anomalous solute transport. Processes that have been hypothesized to control this behavior,
such as heterogeneous advection and local diffusion, are difficult to isolate using field-based approaches (e.g.,
pumping and tracer tests) alone (National Research Council, 2000). The parameters within existing anoma-
lous solute transport models that control behavior are to date largely treated as fitting parameters, although
some limited previous work has shown that these values may be correlated to the hydraulic conductivity field
(Benson et al., 2001; Willmann et al., 2008), facies distributions (Zhang et al., 2007), and/or fracture length scale
(Reeves et al., 2008). The main limitation of many nonlocal models is the weak predictability of the model
and its main parameters (Zhang et al., 2009); in other words, the physical meaning of many of the param-
eters within the models is difficult to measure or correlate conclusively to geology (Willmann et al., 2008).
For example, it has been observed that systems with identical statistical length scales exhibit quite different
solute behavior, suggesting pathway connectivity is an important parameter to consider. Unfortunately, no
reliable measure of in situ connectivity exists. While it has been suggested that tracer paths can be used as
a metric for connectivity, quantifying pathways in natural systems has proven difficult given the limited data
collected during standard tracer tests. Further, a limited number of well-controlled experiments have been
conducted exploring the physical meaning of the fitted parameters. If we are looking for predictive abilities
in such systems, it is critical to work with adequate frameworks that capture this anomalous behavior.
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Part of the state of the art for modeling solute transport is continuous time random walks (CTRWs), which
conceptualize a solute plume as a finite number of discrete particles. At each model step particles transition
in space and time by probabilistically sampling a waiting time and jump distance from a given distribution.
Traditionally, independence is assumed between successive particle jumps. However, this assumption has
been shown to be violated in a multitude of studies (Bolster et al., 2014; de Anna et al., 2013; Le Borgne et al.,
2008a; Morales et al., 2017; Sund et al., 2015). The spatial Markov model (SMM) accounts for velocity correla-
tion between particle jumps and has proven particularly advantageous when predicting transport in systems
displaying intermittent behavior (de Anna et al., 2013; Kang et al., 2014). The SMM captures intermittency
generated from microscale features in an upscaled framework, equipping it to accurately portray larger-scale
transport. It has been successful in modeling transport across a diverse range of synthetic systems of interest,
including flows through highly heterogeneous permeability fields (Le Borgne et al., 2008b, 2008a), complex
pore-scale systems (Kang et al., 2014), inertially dominated systems (Bolster et al., 2014; Sund et al., 2015), and
fractured media (Kang et al., 2011, 2015, 2016). Recently, it was also extended to predict reactive transport
(Sund et al., 2016; Sund, Porta, Bolster, & Parashar, 2017) as well as mixing and dilution effects (Sund, Porta, &
Bolster, 2017).

In the vast majority of the SMM literature, the correlation structure is found by tracking a very large num-
ber of particle trajectories in high-resolution numerical simulations and explicitly calculating corresponding
statistics (Le Borgne et al., 2011; Sund et al., 2016). However, using such particle tracking methods in real sys-
tems is completely unfeasible. In most practical contexts the best one might hope for is breakthrough curves
at multiple downstream locations, from which such information is difficult to tease out. Therefore, the SMM’s
applicability to laboratory and field studies has been limited, with one notable exception (Kang et al., 2015),
who apply the SMM to nonsynthetic data, but assume a simplified correlation structure and fit an additional
parameter to field-scale push-pull fractured experimental data. The brilliance of this simplification is that it
dissolves the SMM’s reliance on Lagrangian statistics. This is currently the best attempt at applying the SMM
to a real system but is potentially limiting as the assumed structure may not reflect universal behaviors and
there is still no generalized method to best estimate the SMM’s correlation in real-world settings.

Sherman et al. (2017) introduced an inverse SMM model to estimate velocity correlations using data from
breakthrough curves alone. This algorithm was shown to accurately predict transport in highly idealized
numerical systems but remains untested on observed data. Here, for the first time, we apply the SMM inverse
algorithm to real data that display anomalous behavior. We collect data from columns packed with the zeolite
clinoptilolite, a material that demonstrates non-Fickian transport due to a substantial intragranular poros-
ity consisting of a distribution of pore sizes (Kowalczyk et al., 2006; Sprynskyy et al., 2010). We believe such
complexity gives rise to intermittent behavior and therefore expect the SMM to be more capable than other
models in accurately predicting the transport observed in these experiments. It has been difficult to charac-
terize this complexity, even in columns, such that we can predict transport phenomena (Swanson et al., 2012,
2015). For these experiments, we inject a finite-volume pulse of conservative NaCl tracer at the column inlet
and measure breakthrough curves at three downgradient sampling ports, enabling characterization of the
temporal and spatial evolution of the solute plume. We use observations from the first two sampling ports
to accurately predict breakthrough time evolution downgradient, all under a parsimonious mathematical
framework. The inverse SMM’s robustness is tested by running experiments with Péclet numbers equal to 121
and 1210.

2. Methods

Laboratory tracer experiments were conducted using a conservative NaCl tracer pushed upward through
a zeolite clinoptilolite medium. The experimental column was 124.5 cm in length, 5.2 cm in diameter, and
was made from clear PVC with multiple equally spaced sampling ports positioned 20.8, 41.6, 62.4, 83.2,
and 104.0 cm from the column’s inlet. This allowed simultaneous collection of fluid electrical conductivity
measurements at desired locations within the system (Figure 1). Breakthrough curves from sampling ports
positioned at L/6 and 2L/6, where L is the column length, are used as inputs for the SMM inverse framework.
Measurements at sampling port 5L/6 allowed for predictions from the SMM to be compared with observed
experimental measurements. From here on, sampling ports L/6, 2L/6, and 5L/6 will be referred to as sampling
ports 1,2, and 5, respectively, and corresponding data BTC 1, BTC 2, and BTC 5. A schematic of the column
design and the process of how observed data are input into the SMM is provided in Figure 1.
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Figure 1. Conceptual model of laboratory-produced data pathway for input into the SMM framework. SMM = spatial
Markov model; BTC = breakthrough curve; EC = electrical conductivity.

2.1. Material Characterization, Solution, and Fluid Electrical Conductivity Sensor Preparation
The material utilized in these experiments consisted of a zeolite clinoptilolite, which has coarse, angular grains.
The distribution of grain and intragranular pore size within the column creates a complex intergranular and
intragranular pore space, representative of complexity in natural systems.

Porosity ranges for this zeolite are characterized in Swanson et al. (2012) and Swanson et al. (2015) and sieve
analyses (Table 1). The zeolite was composed of 69.1% SiO2, 11.9% Al2O3, 3.8% K2O, and 3.5% Na2O, with trace

Table 1
Experimental Specifications and Pe Calculation Values

Parameter Detail

Internal column diameter (cm) 5.2

Column length (cm) 124.5

Grain size range (cm) 0.2–0.48

D10 (cm) 0.22

D50 (cm) 0.3

D60 (cm) 0.32

Assumed characteristic length, l (average grain diameter) (cm) 0.31

Intergranular porosity (−) 0.46

Intragranular porosity (−) 0.20

Diffusion coefficient of Na in open water, D∗ (cm2/s) 0.000013

Total flow rates (cm3/s) 0.083, 0.83

Internal sampling port diameter (cm) 0.16

Sampling port flow rate (cm3/s) 0.0034, 0.017

Tortuosity, 𝜔 (−) 1.6

Average linear velocity, v (cm/s) 0.0081, 0.081

Pe (−) 121, 1210

Temperature (°C) 23
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amounts of Fe2O3, TiO2, CaO, MgO, and MnO (St. Cloud Mining, 2013). The zeolite was saturated in deionized
(DI) water and stirred until all possible air was replaced with water.

The tracer and background concentrations were 0.45 and 0.074 g/L NaCl. The tracer solutions were made
with degassed DI water from a Millipore purifier, thoroughly mixed, and stored in airtight high-density
polyethylene storage containers.

The fluid conductivity sensors utilized in the experiments consisted of two micro-flowthrough Amber
Scientific sensors with a sampling volume of 7 μL and measurement resolution of ±0.01μS/cm at sam-
pling ports 1 and 2. A Microelectrodes micro-flowthrough conductivity cell with a sampling volume of 25 μL
and measurement resolution of ±0.1μS/cm was used at sampling port 5. The cells were each calibrated using
three calibration solutions consisting of 1,413, 2,764, and 12,880 μS/cm at a temperature of 23 ∘C. The sensors
were calibrated prior to every experimental run.

2.2. Column Packing
Columns were wet packed using preprepared, fully saturated zeolite clinoptilolite grains to minimize air being
trapped between grains. Wet packing involved filling the column (empty) from the bottom to the top with DI
water using a Cole-Parmer peristaltic pump at a low flow rate (10 ml/min or less) while gently tapping the side
of the column endcap with a rubber mallet to force air trapped in the end cap out of the system. Once the
column was partially full of DI water, the pump was stopped. Then zeolite grains were incrementally added
to the column from their saturation container in 1-cm increments, as was done in previous similar column
experiments with zeolite grains (Briggs et al., 2014; Swanson et al., 2012, 2015). Tapping allows grains to settle
into a uniformly distributed packing. Once completely filled with zeolite, the top endcap was attached and
the peristaltic pump was turned on to push any trapped air out the top endcap. Next, the column was flipped
180∘ (upside down). In preliminary experiments where the column was not flipped, the average linear velocity
between sampling ports as the tracer transported vertically through the column showed an increasing flow
rate through the medium due to an unevenness in packing, despite best efforts otherwise. Flipping the col-
umn prior to starting the tracer experiments effectively mitigated the unevenness in average linear velocity
between sampling ports.

2.3. Experimental Procedure and Péclet Number Formulation
The experimental procedure consisted of first flushing the packed column with degassed DI water until the
material was “clean,” as determined by observation of the effluent from the top of the column. Once clean, the
background solution was injected and sampling ports 1, 2, and 5 were opened and controlled such that port
flow rates were equal and their cumulative discharge was approximately 10% of the total flow rate, maintain-
ing the 1-D flow assumption (Briggs et al., 2014). Each sampling port had a flow-rate control clamp to keep a
constant sampling flow rate throughout the full duration of the tracer test.

The column flow rates used in the tracer tests were 5 and 50 mL/min. This corresponded with Péclet numbers
Pe varying an order of magnitude from approximately 121 to 1210. The lower Pe case was chosen in order to
test the SMM with experimental flow conditions representative of natural groundwater systems. The higher
Pe case corresponds to a regime in which significant velocity correlation is expected and consistent with past
numerical studies (Bolster et al., 2014). The Pe analysis of these experiments is derived from Freeze and Cherry
(1979) with a diffusion coefficient from Yuan-Hui and Gregory (1974) but modified for tortuosity as referenced
in Huysmans and Dassargues (2005) using an empirically derived relationship between porosity of a medium
and tortuosity developed in Matyka et al. (2008):

Pe = vl
𝜔D∗ (1)

where v is the average linear velocity in the vertical direction, l is the average grain diameter, D∗ is diffusion
coefficient of Na+, and 𝜔 is the tortuosity.

Once the fluid conductivity at each of the three sampling ports reached pseudo-equilibrium conditions (fluid
conductivity changes of less than ±1μS/cm around the conductivity of the background solution), the tracer
solution was injected as a finite volume pulse of 66 mL. This was performed by changing the input reservoir
for a determined time at the experimental flow rate; this required 790 or 79 s of injection for the lower and
higher Pe cases, respectively. After the tracer pulse injection, the input reservoir was immediately switched
back to injecting the background solution. Fluid conductivity was simultaneously recorded at a minimum
1-min temporal resolution for all three sensors during tracer breakthrough. An experiment was concluded

SHERMAN ET AL. 4



Water Resources Research 10.1029/2018WR023420

when fluid conductivity values for each of the three sensors read the same fluid electrical conductivity value
as prior to tracer pulse injection and did not change more than±1μS/cm. Once completed, experimental data
were processed and fed into the SMM framework. Table 1 summarizes necessary experimental information.

3. Modeling: SMM and Inverse Algorithm
3.1. The SMM
In the SMM, a solute plume is discretized into N particles, with N sufficiently large. We use N = 5 × 105 in this
study. Each particle’s trajectory through time and space is governed by the Langevin equation

xn+1
i = xn

i + Lc (2)

tn+1
i = tn

i + 𝜏n
i (3)

where during the nth model iteration, particle i jumps a fixed distance of Lc with a travel time 𝜏n
i randomly

sampled from a distribution 𝜓(𝜏). In other words, our domain is divided into cells of distance Lc and at each
model step, the SMM characterizes the time it takes to travel one cell. The time for particle i to reach the outlet
of the nth cell is the summation of travel times, tn

i =
∑n

j=1 𝜏
j
i . The SMM assumes velocity statistics are stationary

over each cell (Sund et al., 2015), which implies that the travel-time distributions for all cells are identical. We
choose a sufficiently large cell length, Lc, to satisfy this assumption. In this study Lc = 20.8cm, which is 1∕6th
the column length, L.

A key feature of the SMM is that successive travel times can be correlated, relaxing the assumption of indepen-
dence inherent to many random walk models. These correlations reflect an underlying behavior that particles
that make a fast/slow transition across one element may often make a fast/slow transition across the next one
also, which has been shown to be the case in high-Pe number systems, when advective processes dominate
diffusion. Specifically, Bolster et al. (2014) showed correlation should be considered when Pe>O(100). In our
column experiments we test at Pe ∼ O(100) and O(1000) .

The SMM accounts for such correlations through a transition matrix. We divide the travel-time distribution
into k classes of equal probability, such that class 1 contains the fastest travel times and class k contains the
slowest. The transition matrix T is then of size k × k. The value of element Ti,j is the probability a particle has a
travel time in class j at the n + 1 model step, given it had a travel time in class i at model step n:

Ti,j = P(𝜏n+1 ∈ class j|𝜏n ∈ class i) (4)

In this study, we choose k = 25, which is sufficient to capture correlation effects. For more details on
implementation, see Le Borgne et al. (2011) and Bolster et al. (2014).

3.2. Inverse SMM Algorithm
Sherman et al. (2017) introduced an inverse algorithm to estimate the SMM’s transition matrix using break-
through curve data alone. Specifically, given that a solute is released at x = 0, the inverse algorithm requires
breakthrough measurements at two locations x = Lc and 2Lc, referred to as BTC1 and BTC2, respectively.

Consistent with the SMM theory, we assume the travel-time distributions for each cell in the column are sta-
tionary. Then BTC1, appropriately normalized, approximates each cell’s travel-time distribution. Discretizing
BTC1 into M travel times enables us to estimate the probability of the mth travel time

P(𝜏m) =
Am∑M

h=1 Ah

. (5)

Am is the area under BTC1 in the interval [ 1
2
(𝜏m − 𝜏m−1),

1
2
(𝜏m+1 − 𝜏m)]. Similarly, a discrete distribution can be

constructed for BTC2. Here BTC1 and BTC2 were discretized into equally spaced time intervals of 0.1 min. We
denote these as PDF1 and PDF2.

This discretization provides enough information to estimate the transition matrix for the system. Let 𝜏z
2 be the

vector of arrival times for x = 2Lc, that is, the discretized times for BTC2. Let 𝜏a
1 be the vector of arrival times

for BTC1 and 𝜏b
1 be the vector of times to travel from x = Lc to x = 2Lc. The stationarity assumption requires

that 𝜏a
1 and 𝜏b

1 follow the same distribution. The discretized governing equation for the SMM follows:

P(𝜏z
2) =

∑
𝜏a

1+𝜏
b
1=𝜏

z
2

P(cell1 = 𝜏a
1 )P(cell2 = 𝜏1

b|cell1 = 𝜏a
1 ) (6)
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Figure 2. Experimental data of breakthrough curves measured at sampling ports 1,2, and 5 for each of three repeat
runs. Sampling ports are positioned at approximately 0.21, 0.42, and 1.04 m from the column inlet, which correspond to
1∕6, 2∕6, and 5∕6 the total column length, respectively. Background conductivity is subtracted from each curve.
BTC = breakthrough curve; EC = electrical conductivity.

Equation (6) states the probability of arriving at the outlet of the second cell in time 𝜏z
2 is the summation of all

probabilities of choosing two successive travel times that sum to 𝜏z
2. If we divide BTC1 into k bins, where bin

1,k contains the fastest, slowest arrival times, we can write an equation statistically equivalent to (6):

P(𝜏z
2) =

∑
i

∑
j 𝜏a

1+𝜏
b
1=𝜏

z
2

P(cell1 = 𝜏a
1 , bin i)Ti,jP(cell2 = 𝜏b

1 |bin j) (7)

In words, the probability of a 𝜏z
2 arrival time at x = 2Lc is the probability of all combinations of successive travel

times that sum to 𝜏z
2. For 𝜏a

1 in bin i and 𝜏b
1 in bin j, the probability of this combination is the product of the

probability of choosing 𝜏a
1 , the probability of transitioning from bin i to bin j, and the conditional probability

of choosing a 𝜏b
1 arrival time in bin j. PDF1 gives a cell’s travel-time distribution, and PDF2 gives the cell 2

arrival-time distribution, so we can write a system of equations to find each Ti,j , the elements in the transition
matrix. For 𝜏q

2 , the qth element in 𝜏z
2, we solve

P(𝜏q
2 ) = (pq,(1,1) · · · pq,(k,k)) ×

⎛⎜⎜⎝
T1,1

⋮
Tk,k

⎞⎟⎟⎠
(8)

Note that we create a matrix of size q × k2 using (8). Element pq,(i,j) =
∑

𝜏a
1+𝜏

b
1=𝜏

q
2

P(cell1 = 𝜏a
1 , bin i)P(cell2 =

𝜏b
1 |bin j), acts as a weight for each T element in the equation. In this system of equations there exists k2

unknowns and Q known values, where Q is the length of the 𝜏z
2 vector. If Q ≥ k2, we can solve the system and

estimate the transition matrix. The discrete, approximate nature of this process leads to a transition matrix that
can closely approximate actual values as shown in the synthetic examples of Sherman et al. (2017), but some
natural uncertainty and variability means that an additional level of filtering can help to improve matches
between BTC1 and BTC2. In this study, we observed overestimates of concentration at late times for BTC2.
This was corrected by artificially lowering the transition probabilities into slow time bins until predicted BTCs
more accurately captured late time tailing behavior (Figure 3). For full details on the implementation of the
inverse SMM as well as a sample code see Sherman et al. (2017) and Sherman (2018).

4. Results and Discussion

The experimental setup measures BTC1 and BTC2, which enables prediction of BTCs downgradient via appli-
cation of the inverse SMM algorithm. The measured BTC at sampling port 5 allows comparison between
observed measurements and predictions. To demonstrate the strength of our procedure, we apply two pre-
dictive models: (i) the SMM as described above using our estimated transition matrix and (ii) an uncorrelated
CTRW, which also follows Langevin equation (2), but where no correlation is imposed on successive jumps
(equivalent to a completely uniform transition matrix).
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Figure 3. Shown is an example of the correction process for run 2 of the Pe = 121 case. The top left transition matrix has
no correction. It predicts a strong kink near 150 min and overestimates late tailing behavior at port 2. In the corrected
matrix (top right), the values for transitioning into bin 25 are artificially lowered, slightly lowering late time prediction.
Additionally, we lower the strongly correlated structure that is causing the kink. This small correction improves
predictions at BTC5 (Figure 4). BTC = breakthrough curve; SMM = spatial Markov model.

All experiments were conducted in triplicate. The Pe = 1210 runs display a high degree of reproducibility,
which is also seen at Pe = 121, but with a little more variability (Figure 2), as lower flow rates in these exper-
iments are more sensitive to any fluctuations at the ports, enhancing relative noise at late times when the
difference between solute and background concentration is low. Note in the Pe = 1210 case, an instrumen-
tation error at port 1 prevented measurement of a BTC in run 1, but given the high degree of reproducibility
between experiments, this was deemed unimportant.

After subtracting off the background conductivity, we discretize BTC1 and BTC2 into a finite set of times and
estimate the transition matrix for each run by applying the SMM inverse algorithm. At both Pe numbers, tran-
sition matrices exhibit diagonal trending (from top left to bottom right of the matrices), indicating the velocity
correlation is significant (Figure 4). As expected, the Pe = 1210 transition matrix exhibits a stronger correla-
tion, demonstrated by higher values in upper left and lower right corners. Physically, the diagonal trending
suggests that fast channels, carved through the pore space between the zeolites, exist. Solute particles pref-
erentially enter and remain in these channels as they transport through the column. The slowest travel times
are likely induced by solute being trapped within the intragranular porosity. The upper right corner of both
matrices has probabilities near zero, meaning solute in fast channels in one cell will most likely not experi-
ence these trapping mechanisms in the subsequent cell. In general, the predicted transport by the transition
matrix is consistent with the column’s geologic characteristics.

Due to noise and possibly resolution of experimental measurements, the proposed inverse SMM model is
not perfect and so we treat the SMM inverse-estimated transition matrix as a “first-guess,” and then tune it
to better fit experimental data (Figure 3). Staying true to the philosophy of the model, we only use data from
BTC1 and BTC2 in this process. Tuning the transition matrix involves predicting BTC2 using the first-guess
matrix and BTC1 as an input. Note that this tuning procedure is only applied to bins that exhibit obvious
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Figure 4. A comparison between experimental observations at sampling port 5 with predictions made using an uncorrelated CTRW, a parameterized SMM with
no tuning applied, and a SMM where the transition matrix was corrected using BTC2 data. Experiments were run at Pe = 121, 1210. The representative estimated
transition matrices for each Pe case are shown. Matrices varied slightly run by run but were very similar for each Pe number. SMM = spatial Markov model;
BTC = breakthrough curve; CTRW = continuous time random walk.

experimental artifacts and no information from BTC5 is ever used in this process. The tuning procedure
requires the following steps:

1. Apply the inverse SMM to estimate the transition matrix and predict BTC2.
2. Compare the predicted and measured BTC2 and inspect that early and late times match, as these regions

are most difficult to predict accurately. Also inspect for any significant deviations in the predicted BTC. Note
in this study we rely on visual inspection, but one could define an error threshold to identify spots where
the predicted BTC needs correction.

3. Artificially adjust the estimated transition matrix elements that cause BTC predictions to fail. After “error”
bins are tuned, we normalize rows to ensure the cumulative row probability is unity. In this work we nor-
malize by dividing each element by the cumulative row probability. Note that the top left and bottom
right portion of the matrix controls early and late time arrival, respectively. Furthermore, in our experience,
unusual predicted BTC behavior corresponds to estimated transition matrix bins that are clearly wrong, that
is, significantly higher or lower than neighboring bins. In this study, we identified error bins by visual inspec-
tion. A possible algorithmic solution would be to define a threshold and ensure that the difference between
neighboring bins within a row does not exceed that threshold. Transition matrix rows in many systems lie
on a smooth spectrum and such jumps in probability between bins is not typically observed.

4. Predict BTC2 with the tuned transition matrix and repeat steps 2 and 3, until the predicted BTC2 satisfies set
error requirements.

Figure 3 provides an example of the tuning process for Pe = 121 on run 2. The predicted BTC2 using the
first-guess transition matrix overestimated late time tailing. To correct this problem we divide the bins con-
trolling late-time tailing (T23,23...T25,25) by a constant factor (approximately 2) and then normalized the rows
such that they sum to 1. Additionally, an unusual kink appeared in the first-guess BTC2 prediction at a time
of approximately 140 min. This kink is produced by the unusually high estimated matrix elements near T20,20,
which appear as a brightly colored bend. Again, we divide these elements by a constant factor and normal-
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ize. We rerun the SMM with the tuned matrix and the kink lessens in the BTC2 prediction. The tuned transition
matrix is then used to predict BTC5. By manually adjusting the bins causing the kink, we significantly improved
predictive capability. While this tuning method is not algorithmic, a number of optimization metrics could
be used to determine a “best” fit. However, given small corrections can easily be found by visual inspec-
tion, no such automated optimization procedure was implemented here. The purpose of manually tuning
the estimated transition matrix is to demonstrate that the estimated matrix can be improved and only minor
adjustments must be made to achieve accurate predictions. However, even without the tuning process the
inverse SMM method still captures general velocity correlation trends and therefore significantly improves
upon an uncorrelated CTRW. Estimated and tuned transition matrices from this experiment are made public
via Github so that results may readily be reproduced by the community at large (see the acknowledgments
section for details).

With this we can now run three predictions (uncorrelated CTRW, SMM with first-guess matrix, and SMM with
tuned matrix) for BTCs at port 5 and compare with experimental observations. In all runs, the tuned SMM
outperforms the uncorrelated CTRW and accurately predicts early, peak, and late-time concentration arrivals
(Figure 4). The SMM predictions without tuning capture peak concentration arrival but overestimate late-time
tails. In all runs, the noisiest measurements occur at late times, as there is challenge in distinguishing between
low solute concentration and the background solution. Model inputs therefore contain this noise, which prop-
agate and appear in predictions. Additionally, fluctuations in sampling port rates can generate error. However,
despite these limitations the “tuned” SMM predicts BTCs remarkably well and even the first-guess SMM offers
a significant improvement upon the uncorrelated CTRW model. Given this success we believe that the SMM,
coupled with our novel inverse model, is ready for testing and application to field-scale systems.

Like other upscaled models, the SMM is a representative elementary volume approach, meaning the model
is only valid and applicable at field-scale sites where the assumptions of representative elementary volume
theory holds; that is, model parameters are stationary across elementary volumes. The SMM has been shown
to accurately predict simulated transport in heterogenous 3-D porous media generated from real geologic
samples (Kang et al., 2014), and so we expect our inverse algorithm to perform well for similar representative
field sites. The quasi-one-dimensional design of the experimental columns means all solute sampled at the
initial two ports is transported to the third port. In higher dimensional flows, it is possible that solute is trans-
ported in the transverse direction and thus never reaches the downstream sampling port. This is a well-known
challenge, faced, for example, in the well-known Macrodispersion Experiment site experiments where mass
recovery rates appeared very low (e.g., Harvey & Gorelick, 2000). Such challenges plague application of any
upscaled transport models to real field conditions, and overcoming those specific hurdles is a challenge to be
met by the community at large. However, if SMM parameters exhibit stationarity along the direction of flow
and integrated concentration breakthrough curves can be reliably measured downstream, then our approach
should be applicable for predicting large-scale downstream transport. Should mass loss occur, but also meet
the stationarity requirement in terms of percent mass loss, then this could likely be accounted for by intro-
ducing a limbo state as was done by Sund et al. (2015). If such conditions are not met then the SMM may not
be an appropriate model and an alternative approach should be sought.

5. Conclusions

For the first time, we predict BTCs associated with tracer tests at downgradient locations based on two curves
from upgradient locations using a fully parameterized SMM. This work is an important step to predicting
transport in complex heterogeneous field systems. Even in these idealized 1-D columns, the influence of
small-scale geologic heterogeneity cannot be overlooked as small-scale effects alter BTC evolution just 1 m
from the solute source. These heterogeneity effects would continue to propagate downgradient in a larger
system, causing further deviation from predictions in traditional models. The effectiveness of the SMM is
that it statistically incorporates small-scale correlation effects into its framework and therefore can accu-
rately predict anomalous transport in complex environments. Although BTC predictions using our inverse
method are not perfect, they offer a significant improvement upon current state-of-the-art models and pro-
vide an excellent first guess at the transition matrix, which can be further optimized quite easily given two
breakthrough histories. Predicting anomalous behavior is of great importance for a number of field systems,
including groundwater remediation (Harvey et al., 1994) and aquifer storage and recovery operations (Culkin
et al., 2008). Therefore, if we hope to accurately predict transport in such systems, our models must accurately
account for small-scale physical processes that control large-scale emergent behaviors, as the SMM does.

Acknowledgments
The code used to test our theoretical
framework and experimental data is
made public at https://github:com/
tjsherman24/SMM-Inverse-Model. The
authors would like to thank NSF for
financial support for this work. This
material is based upon work supported
by, or in part by, NSF grants
EAR-1351625, EAR-1417264, and
EAR-1446236.

SHERMAN ET AL. 9

https://github:com/tjsherman24/SMM-Inverse-Model
https://github:com/tjsherman24/SMM-Inverse-Model


Water Resources Research 10.1029/2018WR023420

References
Benson, D. A., Schumer, R., Meerschaert, M. M., & Wheatcraft, S. W. (2001). Fractional dispersion, Lévy motion, and the made tracer tests,

Dispersion in heterogeneous geological formations (pp. 211–240). Netherlands: Springer.
Benson, D. A., Wheatcraft, S. W., & Meerschaert, M. M. (2000). Application of a fractional advection-dispersion equation. Water Resources

Research, 36(6), 1403–1412.
Bolster, D., Méheust, Y., Borgne, T. L., Bouquain, J., & Davy, P. (2014). Modeling preasymptotic transport in flows with significant inertial and

trapping effects—The importance of velocity correlations and a spatial Markov model. Advances in Water Resources, 70, 89–103.
Briggs, M. A., Lewis, F. D. D., Ong, J. B., Harvey, J. W., & Lane, J. W. (2014). Dual-domain mass-transfer parameters from electrical hysteresis:

Theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments. Water Resources Research, 50,
8281–8299. https://doi.org/10.1002/2014WR015880

Culkin, S. L., Singha, K., & Day-Lewis, F. D. (2008). Implications of rate-limited mass transfer for aquifer storage and recovery. Groundwater,
46(4), 591–605. https://doi.org/10.1111/j.1745-6584.2008.00435.x

de Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A. M., Bolster, D., & Davy, P. (2013). Flow intermittency, dispersion, and correlated
continuous time random walks in porous media. Physical Review Letters, 110(18), 184502.

Dentz, M., & Berkowitz, B. (2003). Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. Water
Resources Research, 39(5), 1111. https://doi.org/10.1029/2001WR001163

Feehley, C. E., Zheng, C., & Molz, F. J. (2000). A dual-domain mass transfer approach for modeling solute transport in heterogeneous
aquifers: Application to the Macrodispersion Experiment (MADE) site. Water Resources Research, 36(9), 2501–2515.
https://doi.org/10.1029/2000WR900148

Freeze, R., & Cherry, J. (1979). Groundwater Englewood Cliffs. New Jersey: Prentice Hall.
Goltz, M. N., & Roberts, P. V. (1986). Interpreting organic solute transport data from a field experiment using physical nonequilibrium

models. Journal of Contaminant Hydrology, 1(1), 77–93. https://doi.org/10.1016/0169-7722(86)90008-2, transport and Transformations of
Organic Contaminants.

Haggerty, R., & Gorelick, S. M. (1994). Multiple-rate mass transfer for modeling diffusion and surface reactions in media with porescale
heterogeneity. Water Resources Research, 31(10), 2383–2400. https://doi.org/10.1029/95WR10583

Harvey, C., & Gorelick, S. M. (2000). Rate-limited mass transfer or macrodispersion: Which dominates plume evolution at the
Macrodispersion Experiment (MADE) site? Water Resources Research, 36(3), 637–650. https://doi.org/10.1029/1999WR900247

Harvey, C. F., Haggerty, R., & Gorelick, S. M. (1994). Aquifer remediation: A method for estimating mass transfer rate coefficients and an
evaluation of pulsed pumping. Water Resources Research, 30(7), 1979–1991. https://doi.org/10.1029/94WR00763

Huysmans, M., & Dassargues, A. (2005). Review of the use of pé,clet numbers to determine the relative importance of advection and diffusion in
low permeability environments, 13, 895–904.

Kang, P. K., Brown, S., & Juanes, R. (2016). Emergence of anomalous transport in stressed rough fractures. Earth and Planetary Science Letters,
454, 46–54.

Kang, P. K., de Anna, P., Nunes, J. P., Bijeljic, B., Blunt, M. J., & Juanes, R. (2014). Pore-scale intermittent velocity structure underpinning
anomalous transport through 3-d porous media. Geophysical Research Letters, 41, 6184–6190. https://doi.org/10.1002/2014GL061475

Kang, P. K., Dentz, M., Le Borgne, T., & Juanes, R. (2011). Spatial Markov model of anomalous transport through random lattice networks.
Physical Review Letters, 107, 180602. https://doi.org/10.1103/PhysRevLett.107.180602

Kang, P. K., Le Borgne, T., Dentz, M., Bour, O., & Juanes, R. (2015). Impact of velocity correlation and distribution on transport in fractured
media: Field evidence and theoretical model. Water Resources Research, 51, 940–959. https://doi.org/10.1002/2014WR015799
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