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The Spatial Markov Model (SMM) is an upscaled model with a strong track record in predicting upscaled be-
havior of conservative solute transport across hydrologic systems. Here we propose an SMM that can account for
reactive linear adsorption and desorption processes and test it on a simple benchmark problem: flow and
transport through an idealized periodic wavy channel. The methodology is built using trajectories that are

obtained from a single high resolution random walk simulation of conservative transport across one periodic
element. Our approach encodes information about where a particle starts at the inlet, where it leaves at the
outlet, how long it takes to cross the domain and one additional piece of information, the number of times a
particle strikes the boundary, with the objective of predicting large scale transport with arbitrary linear ad-
sorption and desorption rates. Our benchmark problem demonstrates that predictions made with our proposed
SMM agree favorably with results from direct numerical simulations, which resolve the full transport problem.

1. Introduction

Transport of chemical species through porous media can be complex
relative to the flow through the medium due to the fact that con-
stituents can sorb and desorb to the solid matrix, thus slowing down
their movement relative to the flow. A common textbook approach to
account for this is the inclusion of a retardation coefficient in an ad-
vection dispersion equation (ADE) (Bear, 2013). This is only valid when
(i) assumptions required to derive the ADE for conservative transport
hold and (ii) when one can assume that solute in the fluid and solid
phases is in an instantaneous well mixed equilibrium. For complex
porous media where geometries can give rise to heterogeneous flows
comprised of fast preferential flow channels as well as slower trapping
regions, such assumptions can be questionable. Even for conservative
transport, where there is no mass exchange between the fluid and the
solid phase, anomalous (non-Fickian) transport is known to occur,
particularly at early (preasymptotic) times [e.g. (Salles et al., 1992;
Lester et al., 2014)]. The problem is further complicated with the ad-
dition of potentially complex kinetic surface sorption and desorption
processes, which introduce their own set of potentially vastly different
time scales (Maghrebi et al., 2014, 2015).

In many instances, it is not of interest to explicitly describe and
resolve all details of transport at all scales, but rather model them
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effectively at some scale of particular interest. Representing the trans-
port of a solute in a complex flow with a one-dimensional upscaled
description can be dated back to upscaling transport in cylindrical tubes
by GI Taylor and Aris (Taylor, 1953; Aris, 1956); this was later gen-
eralized to more complex flow configurations using a variety of related
methods [e.g., (Brenner, 1980; Plumb & Whitaker, 1988; Hornung,
1997)]. In all cases, longitudinal transport can be described with an
effective one dimensional ADE with an enhanced Fickian dispersion
coefficient that reflects spreading due to subscale variations in velo-
cities. These models have been generalized to include a wide variety of
reactive processes including surface reactions and mixing processes
[e.g. (Shapiro & Brenner, 1988; Dykaar & Kitanidis, 1996; Bolster et al.,
2011)]. Dykaar & Kitanidis (1996) calculated effective dispersion, ve-
locity and reaction rates in an idealized pore geometry by considering
flow and transport in a periodic channel with sinusoidal boundaries
where solute can react and degrade close to the boundaries, a process
that is mathematically similar to sorption. Levesque et al. (2012) gen-
eralized Taylor dispersion to systems that include adsorption and des-
orption to and from solid boundaries in the flow domain and applied it
to benchmark Poiseuille flows in planar and cylindrical geometries,
both in constant and periodic time varying flows. In all cases effective
velocities and dispersion coefficients can vary significantly when
compared to values obtained for a conservative solute. These
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coefficients may also vary dynamically in time as recently shown in
(Zhang et al., 2017).

The above methods, in their original form, hinge on the assumption
that sufficient time has passed for the solute to sample the full variability
of flow velocities under displacements induced by diffusion. This is
characterized by the Taylor dispersion time scale 7, = L?/D, where L is a
characteristic length scale and D the diffusion coefficient. At times
smaller than this, the aforementioned models are strictly speaking not
valid. In the presence of reactions, the relative magnitude of reaction and
transport characteristic time scales becomes relevant to the applicability
of continuum-scale models, such as the standard advection-dispersion-
reaction equation [e.g. (Battiato et al., 2009; Battiato & Tartakovsky,
2011)]. Depending on the nature of the problem at hand, this may or
may not be important. For example, many observations of so called
anomalous or non-Fickian transport [e.g. (Rehfeldt et al., 1992; Harvey &
Gorelick, 2000; Cortis & Berkowitz, 2004)] are situations where all
length and velocity scales of the system have not yet been sampled and
where the largest time scale might be tremendously large relative to
times of practical interest [e.g. (Dentz et al., 2004; Zhang et al., 2007)].

It is possible to relax this assumption and develop similar theories
that are valid at pre-asymptotic times [e.g. (Richmond et al., 2013;
Porter et al., 2010; Porta et al., 2016)], but these still come with strong
assumptions that may or may not be met. A strong benefit of these
models is that they can help yield great physical insight into important
processes at small scales that dominate large scale behaviors. However,
in some instances the resulting models can be highly complex integro-
differential equations with strong memory effects, meaning that solving
them can be as burdensome as solving the full microscale problem [e.g.
(Davit et al., 2012; Porta et al., 2016)].

The Spatial Markov model (SMM), first introduced by (Le Borgne
et al., 2008a) provides an alternative, relatively parsimonious approach
that can be applied at preasymptotic times, significantly earlier than
Taylor dispersion (Sund et al., 2016). The SMM falls into the broad fa-
mily of continuous time random walk (CTRW) models (Berkowitz et al.,
2006). In the SMM, a solute plume is represented as a large number of
infinitesimal particles that transition through space and time. Most often,
spatial increments are fixed and temporal increments are random, sam-
pled from a measured transition time distribution. This is common to
many CTRW models. What sets the SMM apart is that successive tem-
poral increments can be explicitly correlated, reflecting underlying per-
sistence of fast particles to move quickly and slow particles to move
slowly, which is particularly important in systems that are advection
dominated (Bolster et al., 2014). The SMM has had success in upscaling
transport across a diverse set of transport settings, including highly
heterogeneous Darcy scale porous media (Le Borgne et al., 2008a; Le
Borgne et al., 2008b), fracture networks (Kang et al., 2011), pore scale
systems (Le Borgne et al., 2011; De Anna et al., 2013; Bolster et al., 2014;
Kang et al., 2014), unsteady flows through porous media (Sund et al.,
2015a), and a field scale application to a fractured aquifer (Kang et al.,
2015). The model has recently been extended to incorporate nonlinear
features such as mixing and reactions (Sund et al., 2015b; Sund et al.,
2017a, 2017b). In the above examples, the flows are typically either
highly heterogeneous with some random structure, or non-uniform, but
with a periodic unit cell, as commonly used in classical upscaling ap-
proaches such as volume averaging (Plumb & Whitaker, 1988; Bahar
et al., 2018), the method of moments (Brenner, 1980) or homogenization
(Hornung, 1997; Boccardo et al., 2018a).

One of the criticisms of the SMM is that it can require extensive
parameterization and the most common approach to date is to track
Lagrangian particle statistics across two spatial increments, measuring
particles transition times across each and representing the correlation
structure via a transition matrix. Simplified forms have emerged which
assume an idealized structure to the transition matrix and have shown
success (Kang et al., 2015; Kang et al., 2016), but the assumed structure
may not be sufficiently general to be universal. More recently, an ap-
proach was developed that takes successive breakthrough curves and
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infers the transition matrix structure through an inverse modeling ap-
proach (Sherman et al., 2017). This was later applied to laboratory scale
data of transport through zeolite packed columns (Sherman et al., 2018).
All of these approaches require information about travel times across two
spatial intervals. Within a domain composed of periodic cells, Sund et al.
(2017b) developed an approach that only requires travel statistics across
one cell by parameterizing the model in terms of trajectories rather than
just travel times alone. Thus, with one high resolution simulation across
one cell (corresponding to one spatial increment in the SMM), they were
able to efficiently and rapidly predict large scale transport and mixing
across much greater extents, with the upscaled model running on the order
of 1000 times faster than a fully resolved one.

The work of (Sund et al., 2017b) was only performed in the context of
conservative transport. Here we extend this approach to account for
(linear) adsorption and desorption processes. In particular, our goal is to
only use trajectory statistics from conservative non-sorbing transport
across a single periodic cell to predict larger scale transport of a solute that
can adsorb and desorb to the solid matrix with arbitrary adsorption and
desorption rates; that is, we only need one high resolution simulation
across one periodic element with which to ultimately predict a broad and
extensive range of possible transport scenarios across large scales. This
extension to sorbing solutes opens the pathways towards the application of
this methods to a broad class of reactive transport problems, such as
contaminant transport in aquifers (Rathi et al., 2017), as well as flow
through membranes and packed bed reactors (Iliev et al., 2017; da Luz
et al., 2018). In this work we showcase our modeling procedure by relying
on a relatively simple flow geometry. The simplicity of the geometry al-
lows for a clear understanding of emergent behaviors which can then be
related to observations in more complex settings. Thus, we regard it as an
ideal starting point for our current extension of the SMM. Moreover, a
simple geometrical setting can provide critical information with which to
parameterize pore network models and therefore help bridge the gap be-
tween pore- and continuum-scale [e.g. (Seetha et al., 2014)].

2. Model system
2.1. Pore scale setting

Fig. 1 displays the geometry used in this study, a converging-di-
verging channel filled with fluid, whose solid boundaries are defined by

h(x)=h + h’sin(sz - E),

2 (@D)]

where x is the horizontal coordinate, h(x), i and h" are related to the
width of the half-aperture (see Fig. 1), and L is the length of a single
cell. In this study, to be consistent with previous ones [e.g. (Sund et al.,
2017b; Sund et al., 2015b)], we will focus on the specific values of
h =L/4 and W = 0.8h. This setting was first used by (Dykaar &
Kitanidis, 1996) to upscale effective reaction rates in porous media
using the method of moments. While this geometry is very simple, the
emergent flow displays some of the complex features pertinent to un-
derstanding flow and transport in porous media, including a fast pre-
ferential flow path and stagnant trapping areas, which are known to
strongly impact transport in real porous media [e.g. (Edery et al.,
2014)]. This, and very similar geometries, have received extensive at-
tention in the literature. For example, (Chaudhary et al., 2013;
Chaudhary et al., 2011) and (Bouquain et al., 2012; Bolster et al., 2014)
studied the effects of inertia on flow and transport respectively. Simi-
larly, others have looked at how geometry impacts asymptotic
(Cardenas, 2009; Bolster et al., 2009) and pre-asymptotic transport
(Cardenas, 2008; Le Borgne et al., 2012), as well as the role of turbu-
lence on large scale dispersion (Richmond et al., 2013). One of the
reasons we choose this geometry is that under the assumption of Stokes
flow, i.e. Reynolds number less than O(1), a semi-analytical solution
exists (Kitanidis & Dykaar, 1997; Dykaar & Kitanidis, 1996). The so-
lution uses a perturbation method to solve the biharmonic equation,
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Fig. 1. A schematic of the flow domain and the unit pore cell used in this study.

which governs the streamline structure. Details of the solution, as well
as its validation are available in various papers (Kitanidis & Dykaar,
1997; Dykaar & Kitanidis, 1996; Cao & Kitanidis, 1998; Bolster et al.,
2009) and so are not elaborated on here. The geometry defined above is
chosen because of the interesting flow patterns, including the emer-
gence of a recirculation region and a fast central preferential flow
channel. While the geometry is highly idealized, these specific features
mimic features of interest in real porous media, making this model
potentially appealing. Due to the natural symmetry of the system
throughout this entire work we only ever simulate the top half of the
domain (y > 0).

2.2. Simulation of transport at the microscale

Solute transport with sorption and desorption is modeled by (Khan,
1962; Zhang et al., 2017)

% +Vu®CE ] = VDVCx )] ¥V X € T
S (x,t) ac
= -AS ,t) + aC(x,t) = —D— v € z:su face
a (. 8) +aCx.0) an X & S @

where C(x,t) [ML ~3] is the concentration of the solute in the fluid, u(x)
is the velocity in the fluid phase, D [L>T~'] is the molecular diffusion
coefficient, taken to be constant in the fluid, S(x,t) [ML™?] is the
concentration on the surface, A [T~ ] is the rate of desorption, a [LT™ 1
is the rate of adsorption and n is the unit normal to the boundary. Note
that the first equation in (2) describes transport in the main channel,
which is governed by the advection diffusion equation. The second
equation is the boundary condition, describing exchange between the
fluid and solid phase: the rate of change of surface concentration is
given by the rate at which solute concentration attaches to the
boundary (aC) minus the rate which solid phase concentration is de-
taching (AS); for mass balance reasons this must be equal to the diffu-
sive flux of solute concentration at the boundary (— DZ—‘;). In all cases
we consider an initial condition of an instantaneous line source, flux
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weighted along the pore throat, i.e. C(x,t = 0) o u(x)8(x). This choice
of initial condition is common as it is believed to mimic real experi-
ments [e.g. (Ptak & Teutsch, 1994; Morales et al., 2017)] and also re-
presents the asymptotic distribution to which Lagrangian particles are
expected to converge [e.g. (Dentz et al., 2016; Comolli & Dentz, 2017;
Kang et al., 2017)].

To solve this system we implement a numerical Lagrangian particle
based random walk method (Risken, 1984), where the solute plume is
discretized into a finite number of N particles. We incorporate the
sorption-desorption boundaries following the work of (Boccardo et al.,
2018b). During each step each particle is moved according to Langevin
equation

X" =x" + wAt + £2DAt
YU =y + vt + 7,V2DA
Y ="+ A+ g

i=1, .,N,

3)

where x;" and y;" are the horizontal and vertical position of particle i
respectively at simulation step n, y; and v; are the x and y components of
the velocity respectively, & and # are independent and identically dis-
tributed (iid) Gaussian variables with zero mean and unit variance, At is
a fixed time step, t;" is the time for particle i at simulation step n, and t;
is a random waiting time

{T,-:P>U,-
Ti=

0:P<U’ (C))

where the T; are iid exponential, with density y(z) = Aexp [—Az], P is
the probabilty of sorption and U; are iid U(0,1) (uniformly distributed
between 0 and 1). The solid boundaries in the domain are modeled as
elastic reflection boundaries. Any time a particle reflects off a solid
boundary it either sorbs with probability P, resulting in selecting
randomly from y(z), or does not sorb, resulting in z = 0. To the leading
order, this probability can be computed as

At
a—.
D

P=
6))
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For further details on this as well as higher order approximations
please see (Boccardo et al., 2018b). This number P is compared to a
random number U, drawn from a standard uniform distribution. If
U = P no sorption occurs and if U < P the particle sorbs.

Our choice of solving this system using this Lagrangian random walk
method is based on the following: (i) it naturally aligns with building an
SMM, which relies on Lagrangian statistics, (ii) for a periodic system like
this one, it is possible to simulate very extensive domains as a particle's
velocity at any given time depends only on its local position relative to
the periodic cell, meaning that we do not need a prohibitively large
Eulerian mesh and (iii) for a sufficiently smooth velocity field, such as
this one, it is known not to suffer from numerical dispersion, which could
be problematic since diffusion and adsorption processes are closely
linked. For all of the results that we present in this paper we used one
million particles and a time step of At = 10~ 2, consistent with previous
experience in the same domain (Bolster et al., 2009).

2.3. Dimensionless numbers

The system described in Section 2.2 is characterized by the fol-
lowing dimensionless numbers
n°A

Dag = —.
‘= p

73 Pe=h

=
|
=
13

S

Re =

D

(6)

7 is the mean velocity and v is the viscosity of the fluid. Re is the
Reynolds number, which we have already assumed to be small Re < O
(1) in using the prescribed flow field; Pe is the Péclet number, which
reflects the competition between advection and diffusion processes and
typically lies in the range 0.1 < Pe < 10° (Dykaar & Kitanidis, 1996).
We will focus on the higher range of these values, as it is known that
advection-dominated systems are more likely to violate assumptions in-
herent to Taylor dispersion and classical advection-disperison upscaling.
Da, and Day are adsorptive and desorptive Damkohler numbers, which
respectively compare the time scales associated with adsorptive and
desorptive processes to diffusive ones. In a batch system, large values of
these would correspond to systems close to equilibrium between surface
and fluid concentrations. In the following any reported dimensionless
parameters are obtained by setting # = 1, 2h = 1 (in arbitrary units) and
tuning D, a and A to obtain specified values of Pe, Da, and Dag.

<]

2.4. Inputs for spatial Markov model - trajectories, travel times and number
of hits

Here we define the inputs that must be obtained from the microscale
domain in order to build the macroscale effective SMM, described in the
following section. In all cases we obtain these inputs by running a
random walk with a flux weighted pulse initial condition at the throat
of a pore (see Fig. 1) and simulate transport across one periodic unit
cell. This calibration simulation is for a conservative random walk that
does not include sorption. The periodic unit cell corresponds to the
blown up region in Fig. 1. Sund et al.'s (2017b) SMM is different from
others in that it samples trajectories rather than travel times. These
trajectories are obtained by simulating transport across a single unit
cell, using

X" =x" + wAt + §V2DAt

i=1, ..,N.
¥ =y + vAt + 7,2DAE

)

This is a standard random walk framework (note these equations are
the same as (3), but without the random waiting times associated with
modeling sorption). Using this we store specific information about each
particle's trajectory. In Sund's approach each trajectory is defined by
three parameters: (i) its vertical position at the inlet of the periodic
element y;,, (ii) the time, T, it takes to travel from the inlet to the outlet
and (iii) its vertical position at the outlet when it leaves the periodic
element y,,,. In addition to these three inputs, our method will account
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for adsorption-desorption by storing one additional piece of informa-
tion (iv) Npis, the number of times a particle strikes a solid boundary
when crossing a single cell. We propose that by running one high re-
solution simulation of conservative transport over one periodic ele-
ment, we can obtain all of the required information needed to upscale
and describe transport with adsorption and desorption efficiently over
much larger scales. However, it must be noted that for each different
value of Pe, a different calibration simulation is required.

2.5. Effective transport model - the spatial Markov model

Here we propose an SMM, which is an effective upscaled transport
model that describes transport in one dimension aligned with the di-
rection of flow. The SMM is a time domain random walk model and
again the solute is represented by discrete particles, whose motion in
time and space is governed by:

fik+1 — fik + L
N N NPIfitx
o= BT+ Y
j=1 ®

Tildes refer to upscaled quantities. ¥* is the horizontal location of
particle i at the beginning of step k, ¥ is the time associated with particle i
at the beginning of step k, NY, is the number of times the sampled tra-
jectory strikes the boundary during step k. During each step a particle
transitions a constant longitudinal distance L, the length of our periodic
cell, and it does so in a random time T, which is sampled from a measured
travel time distribution, the discrete distribution obtained from the single
pore calibration simulation in (7). T reflects the range of velocities that
particles sample in traversing the unit cell. The feature that makes the SMM
unique relative to other random walk models is that successive temporal
increments are not independent of one another. Correlation arises when a
particle that traverses one periodic unit quickly is also likely to traverse the
next one quickly and likewise for a slow one. In the absence of diffusion,
particles persist on the same streamline always and so successive jumps
would have the same transition time. Due to diffusion, particles can leave
streamlines and sample various flow streamlines. However, when advective
effects are strong relative to diffusive ones, memory effects persist and must
be accounted for through correlation. In most applications, correlations are
applied using a transition matrix (Le Borgne et al., 2008a). We apply here
instead the trajectory based approach recently proposed in (Sund et al.,
2017b), because the trajectory based method can account for the number
of times each trajectory interacts with the boundary in a way that the
original transition matrix approach cannot. This approach naturally pro-
vides a framework that more readily characterizes interactions of particles
with the reactive boundary, using the information stored as inputs for the
SMM described in §2.4. It should be noted that the periodic nature of the
domain is important in accomplishing this, although some other recent
studies suggest that trajectory based methods may also work for hetero-
geneous systems characterized by a stationary heterogeneity distribution
(Wright et al., 2019; Most, 2019).

In this implementation of the model, each step of length L is asso-
ciated with a specific particle trajectory. We summarize our algorithm
in the following steps:

1. Each particle starts with a given y;, reflecting the desired initial
condition. This sets a specific trajectory that has an associated travel
time, which is used as the time increment T in (8), and an assigned
number of hits Npg¥.

2. Adsorption is accounted for by the term nyi{s 7j, where each strike
with the boundary adds a possible waiting time, which is sampled
from the same distribution y(z) as used in (3) with probability P
from (5).

3. The model then samples the next trajectory randomly, using y,,, as a
conditioning criterion for picking the next trajectory by making sure
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Fig. 2. (Left) Travel Times Distributions across single periodic elements (Middle); Frequency scatter plot of number of times each trajectory hit the boundary; (Right)
Scatter plot for each simulated particle's starting y;, vs the number of times a particle hits the boundary during one travel time. The top row shows results for

Pe = 100 and the bottom row for Pe = 1000.
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Fig. 3. Transition probabilities of y,,, given y;, for Pe = 100 (left) and Pe = 1000 (right). In this figure y;, and y,,, are discretized into 10 bins of equal size.

that its y;, is close to the previous y,,. This is done by discretizing
the inlet into Ny;,s equi-sized bins (we used cases with Ny;,; = 10,
100 and 1000 in this study with no notable difference in results). A
particle's vertical y location determines which bin it is in. Thus yfm
determines the bin from which the next trajectory is sampled. A
trajectory with y**! is randomly and uniformly sampled from the

same bin that y;‘ut ends in. This binning procedure ensures correla-
tion effects are accurately imposed.

2.6. Observables to test model

We will test the proposed SMM by comparing its ability to predict
downstream transport as measured by breakthrough curves (BTCs)
measured at multiple downstream locations. These are x = 5L, 10L, 25L
and 50L. Testing the upscaled model against BTCs at multiple down-
stream locations provides a more robust test of the model compared with
focusing on only one location; sometimes a model can match a single
BTC due to overparameterization, but when the same model can con-
sistently match observations over multiple scales, it suggests that the
underlying physics is being more faithfully captured. Thus, to produce
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benchmark data against which to test the SMM, we run a series of high
resolution random walk simulations using the fully resolved transport Eq.
(3) that account for advection, diffusion, adsorption and desorption. In
all cases we use a flux weighted pulse initial condition and run single
realization simulations with N = 10° particles. These results are the re-
ference solution against which the upscaled model is tested.

3. Results
3.1. Travel time distributions and number of hits

Fig. 2 displays the empirical travel time distributions, measured from
simulations, across a single periodic element for two cases, Pe = 100 and
Pe = 1000. The data used to plot these travel time distributions is from
where temporal increments are sampled. These two Péclet numbers are
chosen because, in the case of purely conservative transport, it has been
shown that for Pe = 100 incorporating correlation effects is unimportant,
while for Pe = 1000 it is (Bolster et al., 2014). These distributions were
obtained by creating a histogram of arrival times and normalizing. The
bin size of the histogram grew logarithmically with larger z.



T. Sherman, et al.

Pe=100

107

1072

Concentration

1073

10

10° 103

10"

Time

Journal of Contaminant Hydrology 222 (2019) 31-40

Pe=1000
107
c
S
B
£ 1072
[1]
[£]
c
3
1078
-4
10
10° 10’ 102 108
Time

Fig. 4. Breakthrough Curves for Pe = 100 (left) and Pe = 1000 (right) at distances of 5L, 10L, 25L and 50L with no sorption at all. Blue dots are DNS results and black
lines are SMM predictions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Also shown are the number of times a particle (trajectory) strikes
the boundary during a given transition across a single cell. Most no-
tably, for both Péclet numbers the vast majority (approximately 99%)
of trajectories never actually strike the boundary and pass through the
pore with no possibility of adsorption taking place. However, some
trajectories can strike the boundary anywhere up to 200 times, meaning
that the likelihood of adsorption can be significant depending on the
adsorption rate, or the probability of attachment P. For the lower Péclet
number case more trajectories strike the boundary than in the
Pe = 1000 case, which intuitively makes sense given that the surface
reaction is diffusion-driven. The expected delay for a reactive particle
that strikes the boundary Ny, times is () = NP \where the angled
brackets denote the expected value.

Finally, Fig. 2 shows a scatter plot of each simulated trajectory's
starting location at the inlet against the number of interactions with the
boundary. This figure clearly highlights that for the Pe = 1000 case a
particle has to start near the boundary in order to have any chance of
interacting with it. A particle that starts on the centerline y = 0 has
nearly zero likelihood of interacting with the boundary and thus ad-
sorbing. For the Pe = 100 case, the number of hits per trajectory is re-
latively independent of y;,. This suggests that accounting for correlation
effects (i.e. knowing a particle's starting location as it transitions through
each pore) may be less important for Pe = 100 than for Pe = 1000, as
found in the conservative case (Bolster et al., 2014).

Fig. 3 displays the discrete transition probabilities that a particle has
for a y,, given a particular y;,, which is a measure of correlation. Note
that this figure is an approximation of the copula density function de-
fining correlation between travel times in consecutive steps (Massoudieh
et al., 2017). As has been seen in previous studies for Pe = 100, this
matrix is relatively uniform, while there is a stronger diagonal dom-
inance for the Pe = 1000 case reflecting the fact that correlation effects
become stronger as Péclet number increases (Bolster et al., 2014).

3.2. Comparison between DNS and SMM predicted breakthrough curves

3.2.1. Limit of no sorption (P = 0)

To begin, we demonstrate the proposed SMM's ability to upscale trans-
port in the absence of any sorption at all. Plots comparing breakthrough
curves at multiple downstream locations measured by DNS and predicted
with the SMM are shown in Fig. 4. As in previous studies, the agreement is
excellent demonstrating the veracity of our proposed approach.

3.3. Limit of unit probability

Next we focus on another limiting case, where the probability of
sorption each time a particle strikes the boundary is unity (P = 1),
meaning that every strike results in an adsorption event. While this may
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not be an entirely physical condition, by considering this extreme case
we are testing our proposed procedure across a wide range of possible
Da,. For Pe = 100 and Pe = 1000 the respective values are Da, = 316
and Da, = 10°. The considered values of >. = 0.1 and 1 correspond to
Dag = 10, 10% and Day = 10, 10° respectively.

Results comparing DNS measured breakthrough curves as well as SMM
predicted ones are shown in Fig. 5. Additionally, for context and to ex-
plicitly demonstrate the role of sorption, breakthrough curves for the case of
zero sorption, as discussed in the previous section, are also included. Again,
the agreement between DNS and SMM is excellent, with the SMM capturing
all essential features displayed by the fully resolved simulations.

For the Pe = 100 case the rising limb of the two earlier break-
through curves is similar for the cases with and without sorption. This
corresponds to fast moving particles following trajectories that never
interact with the boundary. The late time behavior and the further
downstream breakthrough curves are very distinct with a strong se-
paration between the case with and without sorption, reflecting strong
delays due to sorption. For the Pe = 1000 case more particles persist at
moving quickly and do not interact with the boundary; thus the early
arrivals are similar between cases with and without sorption. Again, at
late times there is a deviation between the cases with strong delays in
the tails emerging for the cases with sorption.

3.4. Intermediate sorption

Results corresponding to a sorbing probability that is one order of
magnitude smaller than in the previous section, P = 0.1, are shown in
Fig. 6, which correspond to Da, = 31.6 and 100. The results demonstrate
that the SMM provides reliable results across the parameter space.

The resulting breakthrough curves reflect very similar behavior to
the previous case; however the tails are not as delayed, reflecting the
fact that only 10% of particles that sorbed in the P = 1 case actually do
so here. For the Pe = 1000 and Da; = 1000 case (A = 1, Fig. 6 top
right), it is visually next to impossible to see differences at late times,
while for the longer waiting time Dag = 100 (A = 0.1, Fig. 6 bottom
right) a more distinct delayed tailing behavior emerges for the cases
with sorption. Note that breakthrough curves obtained with P = 0.1,
A = 0.1 (bottom row in Fig. 5) are identical to the ones forP = 1,A =1
case (top row in Fig. 4) because their expected delay times are
equivalent. This is because, on average, multiplying both P and A by a
constant has no effect on average travel times.

3.5. The role of correlation

In this section, we test how important including correlation in the
SMM is for accurately predicting downstream reactive transport beha-
vior. To do so, an uncorrelated one-dimensional time domain random
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Fig. 5. Breakthrough Curves for Pe = 100 (left) and
Pe = 1000 (right) at distances of 5L, 10L, 25L and

50L with sorption given by P = 1. Blue dots are DNS
results and red lines are SMM predictions. Black
g g dash-dot lines are BTCs for the case without sorption.
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walk (TDRW) model is built by simply sampling random trajectories
without considering the inlet and outlet locations, which are the
quantities by which we enforce correlation in our model. The trajec-
tories are sampled uniformly from the calibration simulation data.
Fig. 7 shows the comparisons for all parameter choices considered so
far, but focusing only the furthest downstream BTC (x = 50L). As expected,
the importance of correlation effects is stronger for the Pe = 1000 cases
than for Pe = 100. However, even for Pe = 100 distinguishable errors are
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visible where successive travel times are sampled independently. This sug-
gests that, while correlation effects are seemingly unimportant for the
Pe = 100 case for conservative transport (Bolster et al., 2014), as sorption at
the boundary occurs, correlation begins to play some role, similar to what
has been observed for reactions (Sund et al., 2015b).

Notably, when correlation is not accounted for, predicted break-
through curves fail to capture the full rising limbs and also display
greater delays than the actual measured ones. This reflects the fact that
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Fig. 7. Breakthrough curves at a distance of 50L for
Pe = 100 (black) and Pe = 1000 (magenta). Solid
lines are the SMM with correlation effects included,
while dashed lines do not include correlation ef-
fects. Dots are results from the DNS simulations
(note that these are hard to see as they coincide so
closely with the SMM results). Damkdhler numbers
in parentheses are for Pe = 100 and 1000 respec-
tively. (For interpretation of the references to colour
in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 8. Mean absolute error (MAE) between recovered mass simulated by direct
numerical simulation and uncorrelated simulations at 50L, for Pe = 100 and
Day = 10 as a function of Da,.

too many particles are interacting with the boundary. The uncorrelated
model cannot account for the fact that fast particles have a tendency to
persist at staying fast, as well as the fact that the fastest particles have
virtually no probability of getting sorbed, as shown in Fig. 2.

While well known that correlation plays an ever more important
role as the Péclet number of a system increases, the effect of boundary
reactions on the importance of correlations between successive jumps
has not been previously explored. Fig. 8 quantifies this effect based on
the approximation of particle arrival times. More specifically, we con-
sider the recovered mass at time t

MO = [ " O = 50L, ¢)dr’ ©

102
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10°
Time

which is the cumulative distribution function of solute arrival times at
x = 50L. We compute the mean absolute error (MAE = ¥;_™| Mpys
(t) — Msimutared(t))|) between the results obtained via DNS and the up-
scaled simulation with uncorrelated steps at location 50L. Our results,
in agreement with previous studies, show that the uncorrelated model
can yield accurate arrival times of a nonreactive solute (Da, = 0) for
Pe = 100 as the MAE attains a value of ~5 x 10~ >. The occurrence of
adsorption induces an increase of the MAE by approximately two orders
of magnitude, irrespective of the probability with which reaction oc-
curs. This is likely because only slower particles ever interact with the
boundary and, while weak, some correlation does occur. This does not
mean that the model is not sensitive to P; indeed it must be since larger
values of P result in larger delays. It is only saying that correlation ef-
fects may be more important to include in the upscaled model when
sorption occurs. Note that when correlation is included the MAE is
approximately constant for all adsorption probabilities (including the
conservative case, P = 0) and attains a value of approximately 10>
(not shown).

Additionally, to provide another basis for comparison, Table 1
shows the arrival times when 1%, 50% and 99% of the mass has arrived
for all of the cases shown in Fig. 7. We show the dimensionless time for
DNS and the relative difference R, between DNS and the two models,
computed as

tc (MOD) — t,.(DNS)

Ra (MOD) = t,. (DNS)
pe

10)

where MOD stands for UNC (uncorrelated TDRW) or SMM and t,. in-
dicates the time corresponding to arrivals of percentile pc of total mass
(i.e., pc equals 1%, 50% and 99% here). These results clearly and
quantitatively highlight the good agreement between the DNS and SMM
as well as the aforementioned discrepancies between the DNS and un-
correlated TDRW model. Differences between DNS and SMM are always
within 1%, showing the robustness of the method. On the other hand,
when correlations are neglected, the errors increase sharply with Pe, i.e.
relative differences between uncorrelated model and DNS are up to
10-15% for Pe = 100 and up to 90% for Pe = 1000. In general, the
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Arrival times for 1, 50, and 99% of the solute plume to cross 50L in the DNS and relative difference R, related to the upscaled SMM, and uncorrelated TRDW (UNC).
Cases correspond to different combinations of adsorptive and desorptive Damkohler numbers.

Pe = 100
Case 1% arrival time 50% arrival time 99% arrival time
DNS RA(SMM) RA(UNC) DNS RA(SMM) RA(UNC) DNS RA(SMM) RA(UNC)
Da, = 31.6, Day = 10 208.5 0.58% 11.68% 478.5 0.31% 0.71% 888.4 —0.14% —3.82%
Da, = 31.6, Dag = 100 85.9 0.23% 5.34% 130.9 0.15% 0.46% 198.9 —0.30% —2.72%
Da, = 316, Dag = 10 1416.8 0.77% 15.09% 3953.1 0.40% 0.73% 7800.7 0.21% 0.73%
Da, = 316, Dag = 100 208.6 0.48% 11.78% 478.7 0.21% 0.73% 886.6 0.00% —3.46%
Pe = 1000
Da, = 100, Da; = 100 52.3 0.19% 42.94% 139.8 0.50% 52.46% 635.1 0.60% —13.35%
Da, = 100, Dag = 1000 52.3 0.19% 34.73% 84.4 0.36% 23,26% 219.7 0.59% -10.18%
Da, = 1000, Dag = 100 52.3 0.00% 76.77% 675.2 1.13% 89.84% 4911.7 1.09% —12.92%
Da, = 1000, Dag = 1000 52.3 0.00% 42.83% 139.9 0.43% 52.60% 635.1 0.60% —13.35%

uncorrelated TDRW overestimates early arrivals and underestimates
late arrivals. Correlation effects also appear to have different influence
depending on Da, and Da,. These differences emerge in the 1% and
50% arrival times (early arrivals and median time), although with re-
latively smaller variations than the ones observed for Pe. For early ar-
rivals and median time, the uncorrelated model errors tend to increase
for increasing Da, and decrease with increasing Dag, i.e. the error may
change up to a factor 2 when the two Damkdhler numbers change by
one order of magnitude.

4. Discussion and conclusions

We have extended the Spatial Markov Model for periodic flow domains
proposed in (Sund et al., 2017b) to account for linear adsorption to and
desorption from solid boundaries. In particular, we have built the frame-
work based on a trajectory based SMM, where high resolution trajectories
simulated by an advective-diffusive random walk over a single periodic
flow element are stitched together sequentially to predict transport over
much larger scales. In this novel approach we merely store one additional
piece of information about each trajectory, that is the number of times that
it strikes a solid boundary. This information reflects the solute flux close to
the boundary surface that corresponds to the adsorption reaction rate.
Coupling this with a probabilistic representation of sorption (Boccardo
et al., 2018b), we can effectively upscale transport to represent arbitrary
adsorption and desorption rates. Thus, from a single high resolution
random walk simulation of conservative transport across one periodic
element, we can model an extremely diverse range of adsorption/deso-
rption behaviors without the need to run further high resolution, com-
putationally intensive, small scale simulations for each desired case. Of
course, this current application is strictly restricted to the example of an
idealized periodic setting and it remains to be shown how generalizable it
is to more complex and realistic settings.

As in previous studies of conservative transport, the need for the
upscaled model to account for correlation between successive jumps
depends on the Péclet number of the system, with correlation being
more important as advection begins to dominate more and more.
Similarly, it appears that the Damkohler numbers play a role in de-
termining how important correlation is; merely delineating regions
where correlation is important or unimportant for conservative trans-
port does not provide a sufficient condition for the case when reaction
occurs. This is particularly relevant for the accurate representation of
early and late particle arrivals with the upscaled model, because these
are most sensitive to correlation effects (fast particles tend to persist as
fast and slow as slow). For the conditions explored, we have numeri-
cally verified that the correlation between subsequent travel times plays
a relevant role across the full range of investigated adsorption rates. As
expected, the relevance of correlation is sharply influenced by Pe, but
also increases with Da, (fast adsorption) and decreases with Day (fast
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desorption). This trend is particularly striking for early arrivals, which
could be of practical relevance, e.g., in assessment of membranes life-
cycle or of risk with contaminant breakthrough in aquifers. Notably,
our approach conserves the same accuracy with respect to fully re-
solved simulations for both conservative and reactive transport.

Our model can accurately upscale kinetic sorption and desorption pro-
cesses, i.e. it does not assume equilibrium between sorbed and dissolved
solute mass, as would be the case if modeling adsorption/desorption with a
retardation coefficient. We emphasize that the traditional use of a re-
tardation factor to account for the delays in transport induced by adsorption
and desorption will not work to reproduce the cases that we simulate here.
The main effect of a retardation coefficient would simply be a rescaling in
time of a conservative concentration profile or breakthrough curve.
However, the breakthrough curves obtained in this study, in many cases,
have a fundamentally different shape from those without adsorption and
desorption. The use of a retardation coefficient assumes an instantaneous
equilibrium between mobile and immobile parts of the domain and clearly
that is not the case here, particularly for the higher Péclet number case. The
persistence of correlation effects is very much inline with the fact that
highly mobile particles traveling on fast trajectories have virtually no in-
teraction with the boundaries while slower ones can have many, reflecting a
lack of equilibrium. As with upscaling of other transport processes, at late
times as systems begin to homogenize (i.e. greater than Taylor time scales)
conditions for such an equilibrium can arise, but this may or may not be
useful depending on the scales that one is interested in.
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