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We characterize the influence of different intersection mixing rules for particle tracking simulations on
transport properties through three-dimensional discrete fracture networks. It is too computationally burdensome
to explicitly resolve all fluid dynamics within a large three-dimensional fracture network. In discrete fracture
network (DFN) models, mass transport at fracture intersections is modeled as a subgrid scale process based
on a local Péclet number. The two most common mass transfer mixing rules are (1) complete mixing,
where diffusion dominates mass transfer, and (2) streamline routing, where mass follows pathlines through an
intersection. Although it is accepted that mixing rules impact local mass transfer through single intersections,
the effect of the mixing rule on transport at the fracture network scale is still unresolved. Through the use of
explicit particle tracking simulations, we study transport through a quasi-two-dimensional lattice network and
a three-dimensional network whose fracture radii follow a truncated power-law distribution. We find that the
impact of the mixing rule is a function of the initial particle injection condition, the heterogeneity of the velocity
field, and the geometry of the network. Furthermore, our particle tracking simulations show that the mixing
rule can particularly impact concentrations on secondary flow pathways. We relate these local differences in
concentration to reactive transport and show that streamline routing increases the average mixing rate in DFN
simulations.
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I. INTRODUCTION

The behavior of fluid flow and the associated transport
of dissolved chemicals through low-permeability subsurface
rocks is primarily controlled by fracture networks within the
medium. Length scales within these networks typically range
several orders of magnitude [1] and characterizing the inter-
play across these length scales has applications in a range of
engineering endeavors including CO2 sequestration technolo-
gies [2], geothermal energy extraction [3], unconventional
hydrocarbon extraction [4], and the long-term storage of spent
nuclear fuel [5]. At the network structure scale, connectivity
and density control the general behavior of the fluid flow
field [6]. Within individual fractures, the location of inflow
and outflow boundaries and local variations in the fracture
aperture determine the local flow field [7,8]. However, how
fluid moves through the intersections between fractures is also
important in terms of local dispersion because intersections
are regions of enhanced mixing [9] and can impact network
scale spreading of solute [10].

Discrete fracture networks (DFNs) are one of the most
common modeling tools for simulating flow and transport
through fractured media. In the DFN methodology fractures
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are represented as lower dimensional structures in the domain,
lines in two dimensions (2D) and planes in three dimensions
(3D). The choice to explicitly resolve fractures, as opposed
to using effective properties in continuum models, allows ob-
servations of transport to be linked to the structural properties
of the fracture networks. This choice drastically increases the
cost of running DFN simulations and certain aspects of the
simulation are modeled as subgrid scale processes.

One such subgrid process is particle behavior within frac-
ture intersections. There have been a number of laboratory
experiments [9,11–14] and numerical simulations [15–18] to
better understand particle behavior within fracture intersec-
tions. The fluid velocity field along fracture intersections is
three dimensional and particle behavior is determined by the
combination of the velocity field, the velocity magnitude, and
diffusion. In a DFN, however, the line of intersection is either
a point (2D) or a line (3D) and the true structure of the velocity
field is not resolved. In attempts to represent the particle
behavior several subgrid processes have been proposed. The
two most prominent fracture intersection rules are complete
mixing and streamline routing. Particle transport is primarily
diffusion controlled with the complete mixing rule and advec-
tion dominated with the streamline routing rule. The choice
of which process is most appropriate is determined by the
local physics of the fracture intersection, characterized by a
Péclet number Pe, the ratio of advective to diffusive forces.

2470-0045/2019/99(1)/013110(15) 013110-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.013110&domain=pdf&date_stamp=2019-01-25
https://doi.org/10.1103/PhysRevE.99.013110


THOMAS SHERMAN et al. PHYSICAL REVIEW E 99, 013110 (2019)

Assuming complete mixing can be traced to the fracture
junction experiments of Krizek et al. [11], where an inflowing
branch intersected with multiple outflowing branches. In these
experiments, tracer from the inflow branch entered a junc-
tion and was distributed to the multiple outflowing branches,
which was interpreted as complete mixing of the tracer within
the junction. In a DFN model with a complete mixing subgrid
process, particles enter an intersection and are conceptually
allowed to jump between streamlines and mix within the in-
tersection due to diffusion. In contrast, the streamline routing
mixing rule prohibits solute from crossing streamlines, imply-
ing only advection governs transport, representative of a high
Pe condition. Laboratory experimental observations of solute
trajectories through a single orthogonal intersection with two
inflow and two outflow branches [12–14] suggest streamline
routing is appropriate when the intersection Pe > O(10).

The aforementioned laboratory studies considered trans-
port through an idealized intersection that is poorly repre-
sentative of real geologic geometries. Moreover, they do not
consider the impact of particle behavior along intersections
on transport at the fracture and network scale. There have
been several numerical simulations to address these aspects
of DFN modeling but their conclusions appear to be in dis-
agreement. Park et al. [19] concluded that the mixing rule did
not significantly impact transport for simulations through two-
dimensional networks where fracture lengths were power-law
distributed and solute enters the domain via a point-source
initial condition. Similarly, Cvetkovic et al. [5] simulated
transport through a three-dimensional DFN where particles
were injected across an inlet plane, and concluded that the
mixing rule had little impact on transport as quantified by
travel time distributions. However, Kupper et al. [20], Park
et al. [21], and Kang et al. [10] found that for a point-source
initial condition complete mixing can enhance transverse
spreading of a solute plume compared to streamline routing
for transport through certain two-dimensional lattice cases.
These studies suggest the impact of the mixing rule depends
on the network structure, heterogeneity of the velocity field,
dimensionality of the network, and initial injection mode of
particles. Thus, it is not clear under what conditions the choice
of mixing rule at fracture intersections has an impact on
different large-scale transport features.

We use DFNWORKS [22] to simulate transport through two
different DFN structures that represent varying degrees of
structural and velocity field heterogeneity and study condi-
tions under which the mixing rule is important for transport
through large-scale fracture networks. One network is a quasi-
two-dimensional lattice where the apertures are sampled from
a lognormal distribution and the other is a set of networks
composed of circular fractures whose lengths are drawn
from a power-law distribution. In both sets of simulations,
we consider point injection and flux-weighted injection of
particles across the entire inlet plane. The impact of com-
plete mixing and streamline routing is compared in terms
of the travel time distributions, mean-squared displacement,
and transverse breakthrough distributions of solute plumes
at uniformly spaced control planes. Additionally, to explore
possible implications on mixing driven reactions we also com-
pare mixing rates in simulations with different implemented
fracture intersection mixing rules.

We observe that the impact of the mixing rule depends
on the initial injection mode, the fracture network structure,
and heterogeneity of the velocity field. The greatest impact
on upscaled properties is observed when particles are released
from a point source. As heterogeneity of the network structure
increases particles tend to channelize at the network scale and
the impact of the mixing rule on upscaled behavior decreases.
But even in highly heterogenous systems, there are significant
differences in transport behavior within fracture planes where
in-plane channelization is observed. Specifically, we find that
streamline routing increases channelization of mass to sec-
ondary fractures, resulting in an increased overall system wide
averaged mixing rate and local mixing rates that can differ
by up to two orders of magnitude. This has strong potential
implications for reactive transport, mainly in determining how
aggressively and where mixing driven reactions will occur
[23,24].

II. DISCRETE FRACTURE NETWORK SIMULATIONS

There are a number of methods used to model flow and
the associated transport of dissolved chemical species through
fractured media in the subsurface including stochastic con-
tinuum [25], dual-porosity/dual-permeability [26], and DFN
models [27–29]. Here we use the DFN modeling methodology
where individual fractures are represented as planar (N − 1)-
dimensional objects embedded within an N-dimensional
space. Each fracture is assigned a shape, location, and ori-
entation within the domain by sampling distributions whose
parameters reflect a site characterization. The fractures form a
network embedded within an impermeable rock matrix; we do
not consider interaction between flow within the fractures and
the solid matrix. Each fracture is meshed for computation and
the governing equations for flow and transport are numerically
integrated on the network. The choice to use a DFN model
rather than a continuum model arises due to the focus of this
study, which is characterizing the influence of smaller scale
processes, namely, particle behavior at fracture intersections,
on upscaled transport behavior. Continuum models do not
explicitly represent fractures and their intersections and are
therefore unsuitable for the task at hand.

The generation of each discrete fracture network along
with flow and transport simulations is preformed using the
DFNWORKS suite [22]. DFNWORKS is a high-fidelity DFN mod-
eling suite that has been used in analysis of flow properties
in fractured media with scales ranging from millimeters to
kilometers and with applications in nuclear waste disposal
[30,31] and hydraulic fracturing [4,32]. DFNWORKS combines
the feature rejection algorithm (FRAM) [33], the LaGriT mesh-
ing toolbox [34], the parallelized subsurface flow and reac-
tive transport code PFLOTRAN [26], and an extension of the
WALKABOUT particle tracking method [35,36]. FRAM is used to
generate three-dimensional fracture networks. LaGriT is used
to create a computational mesh representation of the DFN
in parallel. PFLOTRAN is used to numerically integrate the
governing flow equations. WALKABOUT is used to determine
pathlines through the DFN and simulate solute transport.
Details of the suite, implementation, its abilities, applications,
and references are provided in Hyman et al. [22].
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A. Flow simulations

Under the assumption of aperture uniformity within a
single fracture, flow therein is equivalent to flow between two
parallel plates and can be modeled with the Stokes equations,
the governing equations for low Reynolds number isothermal
single-phase Newtonian flow. The Stokes equations can be
integrated to determine the volumetric flow rate Q per unit
fracture width normal to the direction of flow

Q = −b3

12μ
∇P, (1)

i.e., the Boussinesq equation. Here b is the aperture height and
P is pressure. We consider an incompressible fluid such that

∇ · Q = 0. (2)

Equations (1) and (2), along with boundary and initial condi-
tions, are used to derive an elliptic partial differential equation
for the steady-state distribution of pressure within a network

∇ · (b3∇P) = 0. (3)

Once the distribution of pressure and volumetric flow rates
are determined by numerically integrating (3), the Eulerian
velocity field u(x) within the DFN is reconstructed from the
volumetric fluxes and pressures following Makedonska et al.
[35] and Painter et al. [36]. A pressure gradient is imposed,
which is aligned with the x axis, making this also the primary
direction of flow.

B. Transport simulations: Particle tracking

We represent the transport of a nonreactive conservative
solute in the DFN using passive tracer particles, i.e., a La-
grangian approach. Particle motion is purely advective within
a fracture and molecular diffusion is only considered in frac-
ture intersections via a subgrid process. We denote the plume
of particles as � and consider two different inlet conditions.
The first inlet condition is a point source where all particles
are released into a single fracture close to the center of the
inlet plane. In the second inlet condition, particles are spread
across the entire inlet plane and the number of particles at a
given location is proportional to the flux entering the system
at the location, i.e., a flux-weighted injection [30,37,38].

Each particle has a unique initial position that we denote
a = (0, y, z)�, where the superscript � indicates the trans-
pose. The trajectory x(t ; a) of a particle starting at a at time
t = 0 is given by the advection equation

dx(t ; a)

dt
= vt (t ; a), x(0; a) = a, (4)

where the Langrangian velocity vt (t ; a) is given in terms of
the Eulerian velocity u(x) as

vt (t ; a) = u[x(t ; a)]. (5)

The length �(t ; a) of the trajectory at a time t is

d�(t ; a)

dt
= vt (t, a), (6)

where the Lagrangian velocity is the velocity magnitude
vt (t, a) = |vt (t, a)|. The length of the pathline, �, is used

to parametrize the spatial and temporal coordinates of the
particle.

Within the domain, we consider uniformly spaced control
planes that are perpendicular to the primary direction of flow.
The first arrival time τ (xi; a) of a particle at a control plane
located at xi from the inlet is given by

τ (xi; a) = t[λ(xi ); a], λ(xi) = inf{�|xi(�; a) � xi}. (7)

C. Measurements

At every control plane xi, the first arrival times of the
particles [Eq. (7)] are combined to obtain the cumulative
distribution of travel times for the plume of particles:

ψ (t, xi ) = 1

M

∫
d� H[t − τ (xi, a)]. (8)

Here, M is the total mass of all the particles M = ∫
d� and

H (t ) is the Heaviside function. We refer to ψ (t, x) as the
breakthrough curve. We also compute the transverse spread-
ing using the distribution of particle positions at each control
plane. Denoting the position of each particle at the control
plane xi as zx the transverse breakthrough position distribution
(TBPD) in z is

fxi (zk ) = 1

M

∫
d�δ(zk − zxi ), (9)

where δ is the Dirac delta function. An analogous equation is
used to calculate TBPD in y.

The characteristic spreading of the particle plume in the
transverse direction at longitudinal position x is quantified by
the mean-squared displacement,

MSDx = 1

M

∫
d�(zx − zx )2 + (yx − yx )2, (10)

where zx, yx are vectors of the transverse position for each
particle at x and the overline denotes the average over all
particles.

III. PARTICLE BEHAVIOR AT FRACTURE
INTERSECTIONS

When a particle arrives at a fracture intersection, both ad-
vective and diffusive processes should govern motion through
the intersection. In a purely advective system, particle motion
follows the streamlines of the velocity field. However, diffu-
sion enables particles to jump between streamlines and mix.
The amount of mixing that occurs in a fracture intersection
is a balance of the strength of advection relative to diffusion
which can be characterized by Péclet number

Pe = vL

2Dm
. (11)

We adopt the Pe definition provided in [15] where v is the
average velocity within the intersection, L is a characteristic
diagonal distance across the intersection, and Dm is the molec-
ular diffusion coefficient.

The upscaled nature of DFN models prevents the detailed
physics that control mass transfer at fracture intersections
from being resolved. Instead, subgrid processes are used to
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FIG. 1. A fracture intersection with two inflow branches and
two outflow branches. All branches have equivalent discharge mag-
nitudes. In complete mixing (a) mass from both inlets (red and
blue) mix at the intersection and mass is distributed equally to each
outlet (purple). In streamline routing (b) incoming red mass from
the bottom inlet and blue mass from the top inlet are forced to their
respective adjacent fractures and do not mix.

model mass transfer through intersections. There are two mix-
ing rules that are commonly applied: (1) complete mixing and
(2) streamline routing. These rules are representative of end
members associated with diffusion and advective controlled
transport, respectively. The choice of which rule to apply
should reflect the physics of the intersection, as determined
by the Pe.

At a fracture intersection, conservation of mass requires
that the sum of incoming and outgoing Darcy fluxes is zero,∑

i qi = 0. Both mixing rules require knowledge of the Darcy
outflowing fluxes. The streamline routing rule needs addi-
tional information, the position of the inflow branches relative
to each outflow branch, and so implementation of complete
mixing at fraction intersections is simpler than streamline
routing.

A. Complete mixing

Under complete mixing, particle motion within the inter-
section is controlled by diffusion. In this scenario, particles
enter an intersection inlet and are conceptually allowed to
jump between streamlines by being repositioned to any point
within the intersection with equal probability. Figure 1(a)
shows mass transfer under the complete mixing rule in a single
orthogonal intersection where all branches have an equivalent
discharge magnitude. Light-blue mass from the top inlet and
red mass from the bottom inlet mix at the intersection and
are distributed equally between the two outflowing branches.
Each outlet contains mass from both inlets, represented by the
outflowing purple color in the figure.

With complete mixing the probability a particle exits a
given outlet is proportional to the outlet flux, mathematically
represented as

p j = |q j |∑
k |qk| , (12)

where p j is the probability a particle exits outlet j, and k
denotes an outflowing fracture branch.

B. Streamline routing

In the streamline routing rule particle motion through
fracture intersections is advection controlled. Particles adhere
to their respective streamlines through the intersection, as if
no mixing occurs within the intersection. Therefore, particle
motion depends on the particle’s inlet position. The streamline
routing rule differs from the complete mixing rule only when a
fracture intersection has multiple incoming and multiple out-
flowing branches. In a two-fracture intersection there are only
two intersection types that have this geometry: (a) continuous
junctions and (b) discontinuous junctions [13].

A continuous junction has two inflowing branches, two
outflowing branches, and the inflowing branches are adjacent,
i.e., lie on different fractures. Figure 1(b) depicts streamline
routing mass transfer through a continuous junction where all
branches have equivalent discharge magnitudes. Flow from
an inlet is directed to the outflowing adjacent branch. In this
case, all mass from each inlet is distributed to the adjacent
outflowing branch because there is no mixing within the frac-
ture intersection. In general, the streamline routing rule goes
as follows. If discharge from the inlet is less than the adjacent
outlet discharge, all mass is directed to the adjacent outlet.
If the inlet discharge exceeds the adjacent outlet discharge,
conservation of mass requires that the adjacent outlet is filled
and excess mass is directed to the other outlet.

Consider a particle entering a continuous junction from an
inlet with flux qin, which is adjacent to an outflow branch with
flux qadj. The second (opposite) outflow branch lies on the
same fracture as the initial inlet fracture and has flux qopp.
The streamline routing rule dictates that the probabilities of
transitioning from the inlet to the adjacent padj and opposite
popp outflow branches are

padj =
{

1, qadj � qin
qadj

qin
, qadj < qin

, popp = 1 − padj. (13)

More details on continuous junctions are found in Hull and
Koslow [13].

Discontinuous junctions arise from multiple sources and
sinks present in the fracture network, such as a geother-
mal field with production and injection wells [13]. In a
discontinuous junction inflowing branches are opposite and
lay on the same fracture. Hull and Koslow [13] proposed
two distributions of streamline routing through a four-branch
discontinuous intersection, one equivalent to complete mix-
ing and one where the high discharge inlet is preferentially
directed to the high discharge outlet. Philip [39] extended
Hull’s analysis by finding solutions for Laplace and Stokes
flow through the orthogonal intersections. Philip showed that
under certain conditions, mainly when there are significant
differences in branch discharge magnitudes, using complete
mixing for streamline routing can result in significant er-
ror. However, Hull’s other proposed streamline routing rule,
where the high discharge inlet is preferentially directed to
the high discharge outlet, is also prone to error as adjacent
streamlines can have opposite directions for a considerable
distance. Hence, the theory for streamline routing through
discontinuous intersections is still not fully developed. For
completeness, we present Hull’s second proposed streamline
routing rule for discontinuous intersections. In this case, mass
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from the higher discharge incoming branch qmax
in is partitioned

to the higher discharge outflowing branch qmax
out and any excess

mass exits the smaller discharge outflowing branch qmin
out . A

particle arriving from the inlet with qmax
in has outlet transition

probabilities given by

pmax
out =

{
1, qmax

out � qmax
in

qmax
out

qmax
in

, qmax
out < qmax

in

, pmin
out = 1 − pmax

out . (14)

A particle arriving from the weaker inflow branch has
transition probabilities:

pmax
out =

{
qmax

out −qmax
in

qmin
in

, qmax
out � qmax

in

0, qmax
out < qmax

in

, pmin
out = 1 − pmax

out .

(15)

We performed simulations using both of Hull’s discontinuous
streamline routing rules. Results were not affected by differ-
ent rules due in part to the observation that discontinuous
intersections are rare in the systems under consideration. Our
presented results are only shown for the case described above.

The occurrence and frequency of triple intersections, where
three fractures come together at a point, depends on the
particular fractured media under consideration. However,
these triple intersections do occur regularly in unconstrained
stochastically generated DFNs, and their frequency depends
on the fracture length distribution, network density, and frac-
ture family orientation. Thus, from a practical and compu-
tational point of view, a rule for particle behavior at these
points needs to be adopted in DFN modeling. We apply
complete mixing at all triple intersections primarily due to the
lack of experimental data concerning flow properties at triple
intersections by which to verify appropriate streamline routing
rules.

IV. RESULTS

A. Sample fracture networks

We consider flow and transport within two distinct fracture
network structures. The first is a quasi-two-dimensional lattice
network and the second is a set of stochastically generated
networks, where fracture radii are sampled from a truncated
power-law distribution. These two network structures are con-
sidered because they display different features that drive flow
channelization. The lattice networks have an idealized, regular
geometry and flow channelization arises from variations in
the permeability field. In the truncated power-law networks,
fracture intersections are less frequent and the geometry
of the network drives flow channelization. In the analysis
of results we nondimensionalize distance with l∗, the max-
imum fracture radius in the system, and time with τ ∗, the
time required to traverse l∗ traveling at the mean particle
velocity.

1. Lattice network

The lattice network is comprised of two sets of 50 parallel
three-dimensional planar fractures, where fractures in each set
are spaced one meter apart and intersect fractures of the other
sets at a 45◦ angle. The computational domain has sizequery,
[32, 1, 16] m in the x, y, z directions. A pressure gradient of

FIG. 2. One realization of a DFN with fracture lengths drawn
from a power-law distribution. Fractures are colored by their perme-
ability, which is positively correlated with fracture radius.

1 MPa is used to drive flow in the x direction. The imposed
pressure field results in a quasi-two-dimensional velocity field
because velocity in y is negligible.

Fracture apertures are sampled from a lognormal distri-
bution in accordance with observations [40–42]. Each lattice
network has a mean aperture b = 10−4 m and three aperture
variance cases are considered, σ 2

ln(b) = 0.1, 0.5, 1. Twenty-
five realizations are generated for each mixing rule and aper-
ture variance combination. For each combination, transport
is simulated for both point source and flux-weighted initial
injections. These simulations are similar to the 2D lattice
simulations of Kang et al. [10]. However, in our experiments
velocity field heterogeneity is controlled by changing the
distribution of aperture sizes and we consider an additional
flux-weighted initial injection case. The objective of studying
this network set is to fix the network structure and focus on
the effects of variability at the fracture scale.

2. Truncated power-law network

The second set of networks is composed of disk-shaped
fractures whose radii are sampled from a truncated power-law
distribution (Fig. 2), which is a commonly observed length
distribution in field data [1,43–45]. Bour and Davy [43]
showed a power-law distribution accurately captures the wide
range of fracture lengths often observed in geological datasets
[44,45]. In our power-law networks, fracture radii are sampled
from a truncated power-law distribution with exponent α and
upper and lower cutoffs of (Ru; R0):

R = R0

[
1 − η + η

(
R0

Ru

)α]−1/α

, (16)

where η is a random number sampled from a uniform distri-
bution on [0,1]. We choose an exponent α = 2.1 and cutoffs
R0 = 2Ru = 30 m based on field data [1,46]. The networks
are not meant to be realizations of the networks reported in [1]
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(a)

 

(b)

FIG. 3. Cumulative distribution of first passage arrival times (breakthrough curves) for point injection (a) and flux-weighted (b) initial
condition. Thick lines are median breakthrough curves for 25 realizations and transparent lines correspond to single realizations. For each
realization, solid lines indicate streamline routing and dashed lines indicate complete mixing. Colors correspond to different aperture variances;
σ 2

ln(b) = 0.1, 0.5, 1 are depicted with blue (steepest slope), red, and green (least steep slope), respectively.

and [46], but rather semigeneric fracture networks. Fracture
orientations are uniformly random and centers are uniformly
distributed throughout the domain. Fracture apertures are
positively correlated to their radius, b = 5 × 10−5

√
R, which

controls the hydraulic properties within the fracture. This
correlation between fracture size and aperture is common in
DFN models [29,31,47–50]. The computational domain is a
cube with sides of length 100 m. We refer to these as truncated
power-law (TPL) networks.

Ten independent identically distributed network realiza-
tions are generated. We stop the generation of the networks
once 1000 fractures are accepted into the network. This results
in a network that is about seven times denser a network at
the percolation threshold defined by [7,51]. This procedure
ensures that there is a subnetwork that connects inflow to
outflow boundaries. To reduce computational cost, we remove
all isolated clusters of fractures, those that that do not connect
inflow to outflow boundaries, because they do not contribute
to flow. There are roughly 200 fractures in the final networks
and the average fracture intensity (P32: surface area over total
volume) is approximately 0.1. Flow is forced along the x
axis by imposing constant pressure conditions at the inlet
and outlet control planes perpendicular to x. The pressure
difference in x across the inflow and outflow boundary is
1 MPa.

B. Lattice network simulations

1. Breakthrough curves: Lattice

Figure 3 shows the cumulative distribution of first pas-
sage arrival times [Eq. (8)] for the point injection (a) and
flux-weighted (b) initial conditions. Thick lines (streamline
routing) and stars (complete mixing) are median breakthrough
curves for 25 realizations and transparent lines correspond to
single realizations. For each realization, solid lines indicate
streamline routing and dashed lines indicate complete mixing.
Colors correspond to different aperture variances; σ 2

ln(b) =
0.1, 0.5, 1 are depicted with blue, red, and green, respectively.

As velocity field heterogeneity decreases, breakthrough curve
realizations homogenize and the range of arrival times de-
creases. In both injection conditions and for all values of σ 2

ln(b)
there is little impact of the mixing rule on the median observed
travel time distributions. In turn, these results indicate that the
mixing rule has no major impact on mean particle velocities,
demonstrated by no significant change in breakthrough curve
behavior (Fig. 3). Additionally, breakthrough curve realiza-
tions are more clustered near the median breakthrough curve
for the flux-weighted initial condition, e.g., the range of P50

values, the time at which 50% of mass has crossed the outlet
control plane, decreases with the flux-weighted case.

2. Solute spreading: Lattice

Figure 4 shows the spatial evolution of the transverse
breakthrough position distribution fxi (z) for simulated flow
and transport through single realizations of lattice networks
of varying velocity field heterogeneities with a point source
injection initial condition. The top row shows fxi (z) for com-
plete mixing, the middle is for streamline routing, and the
bottom shows the ratio of streamline routing to complete mix-
ing transverse breakthrough position concentrations. In each
column, the streamline routing and complete mixing lattice
networks are identical realizations. Colors are the logarithm of
the concentration with yellow corresponding to relatively high
concentration values and blue corresponding to lower values.
In both mixing rule cases, there is more pronounced flow
channeling as σ 2

ln(b) increases due to the formation of paths of
lower resistance. We calculate the percent of particles concen-
trated on each fracture at each control plane. As heterogeneity
increases from σ 2

ln(b) = 0.1 to σ 2
ln(b) = 1, the largest value of

percent particles on a single fracture increases by nearly a
factor of 2 at distances greater than x/l∗ > 1, demonstrating
increased flow channelization (results not shown).

When complete mixing is used, the particles disperse
transversely faster than in this case of streamline routing
and the plume reaches the lateral boundary of the domain
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FIG. 4. The transverse distribution at sequential control planes through a lattice network with a point injection initial condition for one
realization. All lattices have the same mean aperture size. Variance of aperture size is selected from a lognormal distribution and increases
from the left to right column. Simulations are completed for complete mixing (row 1) and streamline routing (row 2) intersection rules for
the same network realization. Row 3 gives the ratio of streamline routing to complete mixing transverse breakthrough position concentrations.
Colorbars show log probabilities (rows 1 and 2) and absolute ratio values (row 3). Complete mixing enhances particle spreading. As velocity
field heterogeneity increases, the impact of the mixing rule on particle spreading decreases. The transverse direction z is normalized by half
the length the of domain z∗.

closer to the inlet. By contrast, streamline routing increases
channelization, which is most notable at low values of σ 2

ln(b).
Hence, both streamline routing and increasing velocity field
heterogeneity increase channelization of particles. The ratio of
the streamline to complete mixing TBPD highlights how the
evolution of fxi (z) changes because of the intersection mixing
rule. Areas of dark blue have value 0, indicating positions
where breakthrough occurred under complete mixing but not

streamline routing. The yellow areas through the center of
the lattice show fractures where streamline routing increases
particle concentration.

Figure 5 shows the same plots as in Fig. 4 for a flux-
weighted injection. Only the σ 2

b = 0.5 is provided as all
σ 2

b values displayed nearly identical behavior. The ratio of
streamline routing to complete mixing for fxi (z) is close to
1 throughout much of the domain, indicating nearly identical

FIG. 5. The transverse breakthrough position distribution at each control plane for one realization of the lattice with a flux-weighted
injection. Simulations are completed for complete mixing (a) and streamline routing (b) intersection rules. (c) gives the ratio of streamline
routing to complete mixing transverse breakthrough position concentrations. Colorbars show log probabilities [(a) and (b)] and the absolute
ratio (c). σ 2

ln(b) = 0.5 is the only aperture variance shown because results do not significantly change for different velocity field heterogeneities.
The mixing rule has less impact on particle spreading with a flux-weighted initial condition. The transverse direction z is normalized by half
the length of domain z∗.
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FIG. 6. Particles within the quasi-two-dimensional lattice network. In (a) and (b), particles injected from the same point source on the left
boundary and driven right by a pressure gradient. In (a), particles adhere to a complete mixing rule (red) and in (b) they follow streamline
routing (blue). The choice of a complete mixing rule in combination with a point injection leads to higher transverse dispersion than if
streamline routing is used under the same initial conditions. (c) shows particles injected using flux weighting adhering to both mixing rules
(red: complete mixing/blue: streamline routing). Here, no significant difference between the distribution of particle locations between the two
rules is observed.

distribution of the solute plume for the two mixing rules. One
exception is the area of yellow in the bottom-right corner of
the ratio figure (c), where streamline routing has a higher
particle concentration. This is an area of low particle concen-
trations and is therefore more sensitive. The results presented
here indicate that the mixing rule’s impact on the evolution
of fxi (z) is less significant when particles are injected using a
flux-weighted initial condition.

To demonstrate these differences, Fig. 6 shows particles
within one realization of the lattice network with σ 2

ln(b) = 1.0
where fractures are colored by pressure. (a) is a snapshot of
particles injected from a point injection where the complete
mixing rule is applied and in (b) streamline routing is applied.
As discussed above, the application of the complete mixing
rule leads to higher transverse dispersion when compared to
streamline routing. (c) shows both particles (red: complete
mixing/blue: streamline routing) injected using flux weight-
ing. Here, no significant difference between the distribution
of particle locations between the two rules is observed.

Figure 7 shows the mean value of the MSD for point (a)
and flux-weighted (b) initial conditions. These are calculated
at each control plane by averaging over all particles and all
25 realizations. Solid lines indicate streamline routing and
stars indicate complete mixing. Colors correspond to different
aperture variances; σ 2

ln(b) = 0.1, 0.5, 1 are depicted with blue,
red, and green, respectively.

For the point injection, there is a significant difference
between the observed MSD values for complete mixing and
streamline routing. For all values of σ 2

ln(b) complete mixing
results in an increased MSD. The impact of the mixing rule on
MSD decreases with increasing velocity field heterogeneity,
shown by a decreasing difference in MSD between mixing
rules. For the flux-weighted injection the mixing rule’s im-
pact on MSD is less than in the point injection case, as
the complete mixing and streamline routing curves more
closely match. Note that the MSD is driven by displace-
ments in the z direction due to the quasi-2D nature of the
lattice.

FIG. 7. The mean MSD in the lattice network is calculated at each control plane by averaging over all particles and all 25 realizations.
Solid lines indicate streamline routing and stars indicate complete mixing. Plotted is MSD for both the point (a) and flux-weighted (b) initial
conditions. Colors correspond to different aperture variances; σ 2

ln(b) = 0.1, 0.5, 1 are depicted with blue [upper curve in (b)], red, and green
[lower curve in (b)], respectively. As velocity field heterogeneity increases the mixing rule’s impact on MSD decreases. A flux-weighted
injection results in less spatial variability of MSD.
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FIG. 8. Median breakthrough curves of ten TPL realizations for
complete mixing (green stars) and streamline routing (thick orange
lines). Solid lines correspond to point injections and dashed lines
correspond to a flux-weighted initial condition. Each breakthrough
curve realization is plotted with a transparent line. The mixing rule
has a negligible impact of the distribution of arrival times. A flux-
weighted initial condition homogenizes the spread of breakthrough
curves.

In the point injection, the number of times particles change
fractures averaged over all particles and over 25 realizations
increases for streamline routing by 52, 36, and 33% for
σ 2

ln(b) = 0.1, 0.5, 1, respectively. As the velocity field hetero-
geneity increases, particles change fractures less frequently
due to increased channelization to high discharge pathways.
In the case of flux-weighted injection, streamline routing in-
creases the mean number of times a particle changes fractures
by 52, 39, and 36% for σ 2

ln(b) = 0.1, 0.5, 1 compared with
complete mixing. Again as the velocity field heterogeneity in-
creases particles change fractures less often and more particles
are channelized to high discharge fractures.

C. Power-law networks simulations

1. Breakthrough curves: TPL network

The median breakthrough curves through the ten TPL
realizations for complete mixing (green stars) and streamline
routing (thick orange lines) are shown in Fig. 8. Solid lines
correspond to point injections and dashed lines correspond
to a flux-weighted initial condition. Each breakthrough curve
realization is plotted with a transparent line. No significant
difference in the breakthrough curves is observed between the
two mixing rules indicating that the choice of mixing rule
has a negligible impact of the distribution of arrival times.
The breakthrough curve is changed in two ways when using
the flux-weighted injection. First, breakthrough curves are
shifted left, meaning particles on average traverse the entire
network in less time compared with a point injection. This
indicates that on average, the selected flow paths resulting
from the sampled point injection in this study are slower
than the fluxed-weighted velocity average. However, given a
larger sample of networks, we expect median breakthrough
curves to converge. Second, the variability in breakthrough

arrival times decreases with the flux-weighted injection; the
flux-weighted breakthrough curves are more clustered near
the median, whereas the point injection breakthrough curves
display greater variation in arrival time for an associated
cumulative concentration value.

2. Solute spreading: TPL network

Figure 9 shows the transverse breakthrough position dis-
tributions in z for one realization of a truncated power-law
distributed radii network for the point (a) and flux-weighted
(b) injection modes. The percent of particles on primary
fractures remains similar across mixing rules and over 50%
of particles at a given control plane are concentrated on less
than 10% of the total fractures in the system. In the case
of point injection, there are primary fractures as indicated
by the brightly colored areas lying between 0 and 0.5 in
z/z∗. Between 0 and 2 x/l∗ there is a relatively low number
of fracture intersections and particle trajectories are similar.
In this region the ratio of streamline routing to complete
mixing TBPD is O(1). At a distance greater than 2 in x, the
fracture intersection density increases and complete mixing
more evenly distributes particles across secondary fractures,
observed as a more uniform color in TBPD distributions.
In streamline routing, increased channelization to secondary
fractures is observed as an increased number of streaks in
the TBPD, particularly prevalent in the top and bottom right
corners of the TBPD figures. These streaks also appear as
yellow areas in the bottom figure that shows the ratio of the
concentration for the two rules.

With a flux-weighted initial condition, the mixing rule
again causes significant differences in TPBD on secondary
fractures, observed as an increased number of streaks in the
streamline routing simulations. However, the general evo-
lution of particle spreading remains similar. Areas of high
particle concentration (green and yellow colors) are similar
for each mixing rule. There is a primary fracture (brightly
colored) that extends from 1 to 2 in x and 0 to 0.5 in z that
has a streamline routing TBPD to complete mixing TBPD
of O(1), indicating particle concentration on this fracture is
approximately equal.

Figure 10 shows the MSD, averaged over all particles in the
ten realizations of TPL networks, for complete mixing (green)
and streamline routing (orange) with a point (solid lines) and
flux-weighted (dashed lines) injection. There is less spatial
variability in MSD for the flux-weighted injection condition.
As opposed to the lattice, the complicated network structure
constrains the spreading of particles thereby limiting the im-
pact of the mixing rule on MSD. The observed channelization
due to streamline routing has a small impact on average
particle behavior. The mean (averaged over all particles and
all realizations) number of times a particle changes fractures
from inlet to outlet increases approximately 5% from 7.7 in
complete mixing to 8.0 in streamline routing. This change
percentage is less than in the lattice because the fracture
intersection density is lower in the TPL networks. Consistent
with the point injection on the lattice, MSD increases with
increasing distance from the initial point of injection.

In the case of the flux-weighted injection, the mean num-
ber of times particles change fractures increases 5% from
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FIG. 9. The transverse breakthrough z-position distribution for one realization of a TPL network for a point (left column) and flux-weighted
(right column) initial injection mode. Simulations are completed for complete mixing [row 1: (a) and (d)] and streamline routing [row 2: (b)
and (e)] intersection rules. Row 3 gives the ratio of streamline routing to complete mixing transverse breakthrough position concentrations.
Colorbars show log probabilities [rows 1 and 2: (a), (b), (d), and (e)] and the absolute ratio value [row 3: (c) and (f)]. Streamline routing
increases channelization of particles to secondary fractures, shown as areas of yellow in the ratio figures. The transverse direction z is
normalized by half the length of domain z∗.

6.2 for complete mixing to 6.5 for streamline routing. The
flux-weighted initial condition increases the initial spread
of particles compared to the point injection, which allows
transverse breakthrough to occur across a larger portion of the
domain. Hence, the flux-weighted injection increases MSD
at all measured control planes. As was the case for the
point injection, the MSD values are nearly the same for both
mixing rules. Similar to the lattice flux-weighted injection
simulations, MSD remains relatively constant as distance
from the inlet increases, with spatial changes resulting from
the network structure and not the mixing rule.

V. DISCUSSION

The results of the simulations presented in the previous
section indicate that there are scenarios where the choice of
mixing rule at fracture intersections can have a large impact
on transport behavior and other scenarios where the impact
is negligible. As noted in the introduction, this is consistent

with the literature where seemingly opposite statements are
made with regard to how important is the mixing rule. The
magnitude of the mixing rule’s influence is determined by
how particles enter the network, the complexity of the fracture
network, and the heterogeneity of the velocity field.

A. Injection mode

There are two major differences between the flux-weighted
and point injection modes that cause differences in solute
spreading. First, a point injection releases particles onto one
fracture and all particles are influenced by the same local
effects near the injection point. Therefore, the initial behav-
ior is highly dependent on where the particles are released.
The flux-weighted initial condition spreads particles across
the entire inlet, thereby reducing the impact of such local
effects and reflecting a more broad statistical sampling of
the heterogeneous system. Second, a flux-weighted injection
channelizes particles to high discharge fractures from the
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FIG. 10. The MSD is averaged over all particles in ten realiza-
tions of stochastically generated TPL networks for complete mixing
(green) and streamline routing (orange) with a point (solid lines)
and flux-weighted (dashed lines) injection. The MSD for the flux-
weighted injections has less spatial variability. The network structure
drives particle spreading and so the impact of the mixing rule on
MSD is negligible.

start of the simulation. The flux-weighted injection weights
high discharge fractures more than low discharge fractures
by distributing particles proportionally to fracture discharge,
meaning particles channelize on primary fractures immedi-
ately. As a fracture’s discharge increases the probability of a
particle leaving that fracture decreases. Thus the mixing rule’s
impact decreases as more particles are distributed to high
discharge fractures because particles preferentially remain
on these high discharge pathways. This decreased impact is
demonstrated by similar TPBD evolution for each mixing rule
when particles are flux-weight injected.

In a large enough network, the initial distribution of La-
grangian velocities evolves to an asymptotic stationary dis-
tribution, where Langrangian velocities become proportional
to the local velocity field, i.e., the transverse concentra-
tion distribution for the point injection will converge to the
flux-weighted injection concentration distribution. The time
needed for this to occur can be characterized with a Taylor-
like timescale, TT = a2

DT
, where a is a characteristic length

and DT is effective dispersion. In both network structures
we observe that the point-injected MSD approaches the flux-
weighted MSD as distance (and time) from particle release
increase. Note that a and DT are strongly affected by the net-
work geometry and so TT changes with varying network struc-
tures. Additionally, the mixing rule influences DT ; mainly
complete mixing increases DT , and thus TT decreases.

In a regularized geometry, such as the lattice, we observed
complete mixing enhances initial particle spreading for a point
injection (Fig. 4). At the length scales considered, the point
injection breaks Lagrangian ergodicity, that is, the Lagrangian
velocity statistics sampled along a particle trajectory is not
equivalent to an ensemble average across all particle veloc-
ities. Dentz et al. [52] showed that in steady heterogeneous
flows, a Lagrangian distribution found by spatially sampling

along particle trajectories is stationary if the initial particle ve-
locity distribution is equivalent to the Eulerian flux-weighted
velocity distribution. Once sufficient time has passed and
the initial condition is erased, ergodicity is established and
the mixing rule becomes negligible for transverse particle
spreading (Fig. 5). Since ergodicity is not established at
preasymptotic times for a point injection, the mixing rule does
impact spreading on the lattice. However, in networks with
highly heterogeneous structures, network geometry becomes
increasingly important and the impact of the injection mode
decreases. For example, in the TPL networks there is a rela-
tively small number of fracture intersections and so particle
transport is constrained by the network geometry and the
injection mode and the mixing rule has negligible impact even
at preasymptotic times (Fig. 9).

B. Network structure

A fracture network’s geometry, specifically the fracture
intersection density and fracture orientation, constrains plume
spreading. As the fracture intersection density increases, parti-
cles have an increased probability of changing fractures. The
lattice network has a higher density of fracture intersections
than the TPL networks and all intersections are continuous
junctions, i.e., incoming inlets are adjacent. Therefore the
mixing rule more significantly impacts particle spreading be-
havior. In continuous junctions, streamline routing increases
the probability of changing fractures (to the adjacent) by a
factor of qadj+qopp

qadj
or qadj+qopp

qin
when qin < qadj and qin > qadj,

respectively. In the lattice network, particles regularly visit
fracture intersections and streamline routing probabilistically
directs more particles to adjacent fractures, causing particle
pathlines to more frequently alternate between positive and
negative directions. This alternating pattern of positives and
negatives cancel, focusing the particle concentration near the
initial inlet transverse position (Fig. 4). Hence, particle path-
lines are significantly altered by the intersection mixing rule,
especially when outlet discharges are similar in magnitude.

The 3D geometry and reduced connectivity of the TPL
networks results in transport that is constrained by geo-
metrical and topological network properties. In turn, these
features, which are far more complex than the quasi-2D
lattice, decreases the impact of the mixing rule relative to
the lattice. One such geometrical effect, local flow cells,
develop from variations in fracture radii length and orien-
tation, which manifests as elongated tails in solute break-
through [53]. Additionally, particles remain on fractures for
longer distances because they encounter fewer intersections,
i.e., solute spreading is structurally constrained. Moreover,
fracture aperture is positively correlated to the fracture radius
in the TPL networks. By nature of the truncated power-law
distributions a small percentage of fractures will therefore
have substantially larger permeability and dominate transport
due to geometric, topological, and hydrological preference.
In combination, these attributes dominate local flow behavior
and decrease the impact of the mixing rule.

Furthermore, streamline routing increases the probability
of transferring particles to the adjacent fracture in a contin-
uous intersection by a factor of qadj+qopp

qin
for qin > qadj, which
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is typical in the case of a particle traveling on a preferential
flow path. For a particle traveling on such a pathway (which is
the majority) in the TPL network, qin ≈ qout as they lie on the
same fracture; qin � qadj is expected due to the fracture length
distribution. This suggests that the probability of a particle
changing fractures remains nearly identical ( qadj+qopp

qin
≈ 1) be-

tween streamline routing and complete mixing, and the choice
of mixing rule is negligible in networks with strong preferen-
tial flow pathways, such as the TPL networks considered in
this study.

C. Velocity field heterogeneity

Closely coupled with the network structure is the velocity
field heterogeneity. In fact, Margolin et al. [54] found that
increasing the network sparseness has the same effect as
increasing the velocity field heterogeneity. As the difference
between incoming discharge magnitudes increases, the prob-
ability of being routed to the higher magnitude outlet also
increases and the impact of the mixing rule decreases. On the
lattice, velocity field heterogeneity increases as the variance
of the fracture aperture distribution increases. Increasing ve-
locity heterogeneity leads to the development of preferential
flow paths in large aperture regions [55], which cause greater
channelization of particles and form a subnetwork of fractures
that dominate transport. The mean number of times a particle
changes fractures decreases with increasing velocity hetero-
geneity because the probability of transferring from primary
fractures decreases. Additionally, the difference in the number
of fracture changes between mixing rules also decreases as
the velocity field heterogeneity increases. Hence, particle
pathlines become more similar and the mixing rule’s impact
decreases as the velocity heterogeneity increases,which is
consistent with the conclusions of Kang et al. [10].

In the TPL networks, discharge through a fracture is di-
rectly related to the fracture radii, hence the distribution of
fracture sizes naturally forms a highly heterogeneous velocity
field. The evolution of transverse spreading for both mixing
rules looks very similar through TPL networks because the
large radii fractures channelize particles and the network
geometry drives overall spreading trends. In addition to the
velocity field heterogeneity, other factors control transport and
reduce the impact of the mixing rule, e.g., network connectiv-
ity and geometry [56]. In the context of conservative transport,
the higher heterogeneity of the TPL network makes the impact
of the mixing rule negligible on spreading metrics, a finding
consistent with Park et al. [19] who studied conservative trans-
port through 2D DFNs with power-law radii distributions.

D. Implications for reactive transport

The results of this study suggest that the mixing rule has
an small impact on common conservative transport metrics
(i.e., breakthrough curves, mean-square displacement, and the
general distribution of TBPD) in complicated geologic media
where the network structure and velocity field are often highly
heterogeneous. While these metrics quantify transport behav-
ior at the network scale there are smaller-scale physical and
chemical variations in geologic media that are important in
the context of reactive transport [57]. In this study we observe

that the mixing rule significantly impacts channelization of
particles at the fracture scale. Such channelization is impor-
tant because it drives solute together, enhancing the mixing
rate and increasing the probability that two species react
[24]. Zou et al. [18] showed that the fracture surface rough-
ness increases particle channelization through an intersection,
thereby increasing solute mixing at the fracture intersection
scale. Similarly, we investigate how channelization due to the
intersection mixing rule influences solute mixing, and thus
reactions, at the fracture scale.

Consider a system with two reactive species A and B, who
undergo the irreversible chemical reaction A + B → C, such
as precipitation of a mineral and two ions [58–61]. The nature
of such reaction requires the difference in concentrations of
species to be conserved. Denote u as the conserved quantity,
where u = cA − cB and ci is the concentration of species i
[58]. Consequently, the amount of C that can be precipitated
is dependent on the less abundant species between A and B. In
geochemical systems described by instantaneous equilibrium
reactions, De Simoni et al. [58] showed the reaction rate
between A and B is a product of a flow driven mixing term
∇T u∇u and a stoichiometric term. Hence, the mixing rate
is directly related to the rate of reaction. The mixing rate
is independent of the chemical effects. Since u and particles
in DFNWORKS are both conserved quantities and have the
same governing equations, we can measure u and therefore
the mixing rate. Similar to the TBPD measured in Fig. 9,
we also measure the joint y-z breakthrough position distri-
bution at each control plane, i.e., we discretize each control
plane into a 2D grid and measure breakthrough concentration
in each cell. This enables construction of the 3D position
breakthrough field. The position breakthrough field provides
the entire u-concentration field that arises after large time
in a steady flow, in which u particles are continuously in-
jected. The mixing rate is calculated from this u-concentration
field.

The ratio of computed mixing rates using streamline rout-
ing and complete mixing is plotted throughout the three-
dimensional domain (Fig. 11) for one network realization
with a point injection (a) and flux-weighted injection (b). The
injection plane is on the front right face and the primary
flow direction is directed to the back left face in both fig-
ures. The ratio of mixing rates at areas near the inlet where
particles have yet to encounter a fraction intersection is 1.
After particles pass through fracture intersections, the mixing
rule distributes particles differently causing significant local
effects in the mixing rates, e.g., notice the yellow streak
intersecting the outlet plane where the local mixing rate differs
by two orders of magnitudes.

Figure 12 shows the mean normalized mixing rate at each
control plane averaged over all realizations for a point injec-
tion (a) and flux-weighted injection (b) in the TPL networks.
For each realization, the mixing rate is normalized by the
maximum mixing rate observed in the streamline routing case.
On average, streamline routing elevates the mean mixing rate
for both modes of injection. The mixing rate is similar across
mixing rules when x∗/l < 1, which corresponds to a distance
equal to the radii of the largest fracture in the network. After
traveling this distance, the mixing rate is noticeably greater
when streamline routing is used in the domain.
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FIG. 11. The ratio streamline routing to complete mixing local mixing ratios is shown for one TPL network realization for a point (a) and
flux-weighted (b) initial injection. The front right face is the plane of injection and the back left face is the domain outlet. Colorbars plot the
absolute ratio value. Near the inlet plane, the ratio between mixing rules is 1 because transport has yet to encounter fracture intersections. Near
the outlet plane, we observe streaks where local mixing rates differ by a factor of 100. Differences in mixing rate occur from differences in
channelization of particles due to the mixing rule.

The transverse breakthrough position distributions in the
TPL networks display increased channelization of particles
on secondary fractures for a streamline routing mixing rule
(cf. Fig. 9). These regions of increased channelization are
therefore also areas of increased mixing. Hence, it is expected
that streamline routing increases the average mixing rate at
each control plane. Figure 12 shows that streamline routing
increases the mean mixing rate at a distance of approximately
equal to the length of the largest fracture radii in the system
l∗. Near the particle source, the mixing rule has a smaller
impact on channelization because particles have encountered
less fracture intersections. At distances exceeding l∗ a particle
must have encountered at least one fracture intersection and

so the mixing rule becomes more important, as fracture inter-
sections enable particles to be channelized to other fractures.

At the fracture scale the local mixing rate can differ by a
factor of 100 or greater between the different mixing rules.
Such large variation occurs on smaller fractures, which are
more sensitive to the mixing rule. Large fractures are less
sensitive to the mixing rule because they carry more particles
and the probability of switching from them is lower, meaning
the concentration gradient is more stable. In systems where
solute and the rock boundary react to dissolve and precipitate
minerals, a large difference in mixing rate may lead to signifi-
cant differences in the temporal evolution of transport. Hence
implementing the most physically appropriate mixing rule is

FIG. 12. The mean mixing rate averaged over ten TPL realizations at each control plane is compared for complete mixing (green) and
streamline routing (orange) with a point injection (a) and flux-weighted (b) initial injection. In each realization, the mixing rate is normalized
by maximum mixing rate observed for streamline routing. Streamline routing increases the mean mixing rate. At distances greater than l∗ from
the particle source the difference between mixing rules is greater because particles have encountered at least one fracture intersection.
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necessary for developing reliable predictive DFN modeling of
reactive transport.

Cvetkovic et al. [5] simulated sorbing tracers through a 3D
DFN. Reactive transport was quantified with a hydrodynamic
retention variable β, which is a normalized surface area for
diffusion transfer into the rock boundary [62]. They found that
streamline routing has a small impact on β compared with
complete mixing, but streamline routing does slightly shift β

toward higher values. The increased β suggests streamline
routing is more reactive. These results are consistent with
our observations of increased channelization to secondary
fractures under streamline routing, as β increases as aperture
size decreases and secondary fractures typically have smaller
apertures than primary fractures. β is an averaged parameter
over particle trajectories and so the significant local effects
observed in this study are not apparent by a slightly increased
value. The results of our study suggest that the slight increase
in β observed by Cvetkovic et al. [62] could be the result of
increased channelization of particles to secondary fractures
with streamline routing.

VI. REMARKS

We presented a study characterizing the impact of particle
behavior at fracture intersections in three-dimensional DFNs
on upscaled transport behavior. Mass transfer at fracture in-
tersections in DFN models is represented with two subgrid
processes, complete mixing and streamline routing, which are
the end member cases of the Pe number, i.e., particle motion
through a fracture intersection is governed only by diffusion or
advection, respectively. The simulations presented in the pre-
vious section indicate that there are scenarios where the choice
of mixing rule at fracture intersections have a large impact
on transport behavior and other scenarios where the impact
is negligible. The magnitude of impact of the mixing rule is
determined by the particle initial injection mode, the fracture

network structure, and the heterogeneity of the velocity field.
The mixing rule’s impact increases with a point injection
because local effects associated with the fracture of injection
control initial particle transport. As the network geometry and
velocity field heterogeneity increase, particle channelization
to high discharge fractures increase and the impact of the
mixing rule on conservative transport at the network scale
decreases. In all cases, however, streamline routing increases
channelization of mass to secondary fractures, resulting in an
increased average mixing rate and local mixing rates that can
differ by two orders of magnitude. Therefore, the choice of
mixing rule at fracture intersections will influence reactive
transport simulations within DFN models. We consider the
two end members for intersection mixing rules and our simu-
lations enforce that every intersection prescribes to the same
rule. In real geologic media, both advection and diffusion
affect mass transfer and a distribution of local fracture inter-
section Pe exists. Quantifying the impact of these processes
warrants future investigation.
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